Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Date Range
2010 2019


At present, almost 70% of the electric energy in the United States is produced utilizing fossil fuels. Combustion of fossil fuels contributes CO2 to the atmosphere, potentially exacerbating the impact on global warming. To make the electric power system (EPS) more sustainable for the future, there has been an emphasis on scaling up generation of electric energy from wind and solar resources. These resources are renewable in nature and have pollution free operation. Various states in the US have set up different goals for achieving certain amount of electrical energy to be produced from renewable resources. The Southwestern region of …

Contributors
Prakash, Nitin, Heydt, Gerald T., Vittal, Vijay, et al.
Created Date
2013

An increase in the number of inverter-interfaced photovoltaic (PV) generators on existing distribution feeders affects the design, operation, and control of the distri- bution systems. Existing distribution system analysis tools are capable of supporting only snapshot and quasi-static analyses. Capturing the dynamic effects of the PV generators during the variation in the distribution system states is necessary when studying the effects of controller bandwidths, multiple voltage correction devices, and anti-islanding. This work explores the use of dynamic phasors and differential algebraic equations (DAE) for impact analysis of the PV generators on the existing distribution feeders. The voltage unbalance induced by …

Contributors
Nagarajan, Adarsh, Ayyanar, Raja, Vittal, Vijay, et al.
Created Date
2015

Market acceptability of distributed energy resource (DER) technologies and the gradual and consistent increase in their depth of penetration have generated significant interest over the past few years. In particular, in Arizona and several other states there has been a substantial in-crease in distributed photovoltaic (PV) generation interfaced to the power distribution systems, and is expected to continue to grow at a significant rate. This has made integration, control and optimal operation of DER units a main area of focus in the design and operation of distribution systems. Grid-connected, distributed PV covers a wide range of power levels ranging from …

Contributors
Narayanan, Anand, Ayyanar, Raja, Vittal, Vijay, et al.
Created Date
2010

This paper presents a theoretical model for evaluating flashover performance of insulators under contaminated conditions. The model introduces several new features when compared with existing models such as, the formation of dry bands, variations in insulator geometry and surface wettability. The electric field distribution obtained from software for 3-Dimensional models along with form factor are used to determine the dimensions of the dry bands and the onset of arcing. The model draws heavily from experimental measurements of flashover voltage and surface resistance under wet conditions of porcelain and composite insulators. The model illustrates the dominant role played by the insulator …

Contributors
Bo, Lin, Gorur, Ravi, Vittal, Vijay, et al.
Created Date
2012

This thesis presents a new technique to develop an air-conditioner (A/C) compressor single phase induction motor model for use in an electro-magnetic transient program (EMTP) simulation tool. The method developed also has the capability to represent multiple units of the component in a specific three-phase distribution feeder and investigate the phenomenon of fault-induced delayed voltage recovery (FIDVR) and the cause of motor stalling. The system of differential equations representing the single phase induction motor model is developed and formulated. Implicit backward Euler method is applied to numerically integrate the stator currents that are to be drawn from the electric network. …

Contributors
Liu, Yuan, Vittal, Vijay, Undrill, John, et al.
Created Date
2012

The electric transmission grid is conventionally treated as a fixed asset and is operated around a single topology. Though several instances of switching transmission lines for corrective mechaism, congestion management, and minimization of losses can be found in literature, the idea of co-optimizing transmission with generation dispatch has not been widely investigated. Network topology optimization exploits the redundancies that are an integral part of the network to allow for improvement in dispatch efficiency. Although, the concept of a dispatchable network initially appears counterintuitive questioning the wisdom of switching transmission lines on a more regu-lar basis, results obtained in the previous …

Contributors
Potluri, Tejaswi, Hedman, Kory, Vittal, Vijay, et al.
Created Date
2011

The grounding system in a substation is used to protect personnel and equipment. When there is fault current injected into the ground, a well-designed grounding system should disperse the fault current into the ground in order to limit the touch potential and the step potential to an acceptable level defined by the IEEE Std 80. On the other hand, from the point of view of economy, it is desirable to design a ground grid that minimizes the cost of labor and material. To design such an optimal ground grid that meets the safety metrics and has the minimum cost, an …

Contributors
Li, Songyan, Tylavsky, Daniel J., Ayyanar, Raja, et al.
Created Date
2016

Recent changes in the energy markets structure combined with the conti-nuous load growth have caused power systems to be operated under more stressed conditions. In addition, the nature of power systems has also grown more complex and dynamic because of the increasing use of long inter-area tie-lines and the high motor loads especially those comprised mainly of residential single phase A/C motors. Therefore, delayed voltage recovery, fast voltage collapse and short term voltage stability issues in general have obtained significant importance in relia-bility studies. Shunt VAr injection has been used as a countermeasure for voltage instability. However, the dynamic and …

Contributors
Salloum, Ahmed, Vittal, Vijay, Heydt, Gerald, et al.
Created Date
2011

Electric utilities are exploring new technologies to cope up with the in-crease in electricity demand and power transfer capabilities of transmission lines. Compact transmission lines and high phase order systems are few of the techniques which enhance the power transfer capability of transmission lines without requiring any additional right-of-way. This research work investigates the impact of compacting high voltage transmission lines and high phase order systems on the surface electric field of composite insulators, a key factor deciding service performance of insulators. The electric field analysis was done using COULOMB 9.0, a 3D software package which uses a numerical analysis …

Contributors
Mohan, Nihal, Gorur, Ravi S., Heydt, Gerald T., et al.
Created Date
2012

This research work illustrates the use of software packages based on the concept of nu-merical analysis technique to evaluate the electric field and voltage distribution along composite insulators for system voltages ranging from 138 kV up to 1200 kV ac. A part of the calculations was made using the 3D software package, COULOMB 8.0, based on the concept of Boundary Element Method (BEM). The electric field was calculated under dry and wet conditions. Compo-site insulators experience more electrical stress when compared to porcelain and are also more prone to damage caused by corona activity. The work presented here investigates the …

Contributors
Doshi, Tanushri, Gorur, Ravi S, Vittal, Vijay, et al.
Created Date
2010

This research develops decision support mechanisms for power system operation and planning practices. Contemporary industry practices rely on deterministic approaches to approximate system conditions and handle growing uncertainties from renewable resources. The primary purpose of this research is to identify soft spots of the contemporary industry practices and propose innovative algorithms, methodologies, and tools to improve economics and reliability in power systems. First, this dissertation focuses on transmission thermal constraint relaxation practices. Most system operators employ constraint relaxation practices, which allow certain constraints to be relaxed for penalty prices, in their market models. A proper selection of penalty prices is …

Contributors
Kwon, Jonghwan, Hedman, Kory Walter, Heydt, Gerald, et al.
Created Date
2017

Electric power systems are facing great challenges from environmental regulations, changes in demand due to new technologies like electric vehicle, as well as the integration of various renewable energy sources. These factors taken together require the development of new tools to help make policy and investment decisions for the future power grid. The requirements of a network equivalent to be used in such planning tools are very different from those assumed in the development of traditional equivalencing procedures. This dissertation is focused on the development, implementation and verification of two network equivalencing approaches on large power systems, such as the …

Contributors
Shi, Di, Tylavsky, Daniel J, Vittal, Vijay, et al.
Created Date
2012

Photovoltaic (PV) power generation has the potential to cause a significant impact on power system reliability since its total installed capacity is projected to increase at a significant rate. PV generation can be described as an intermittent and variable resource because its production is influenced by ever-changing environmental conditions. The study in this dissertation focuses on the influence of PV generation on trans-mission system reliability. This is a concern because PV generation output is integrated into present power systems at various voltage levels and may significantly affect the power flow patterns. This dissertation applies a probabilistic power flow (PPF) algorithm …

Contributors
Fan, Miao, Vittal, Vijay, Heydt, Gerald Thomas, et al.
Created Date
2012

ABSTRACT This dissertation introduces a real-time topology monitoring scheme for power systems intended to provide enhanced situational awareness during major system disturbances. The topology monitoring scheme requires accurate real-time topology information to be effective. This scheme is supported by advances in transmission line outage detection based on data-mining phasor measurement unit (PMU) measurements. A network flow analysis scheme is proposed to track changes in user defined minimal cut sets within the system. This work introduces a new algorithm used to update a previous network flow solution after the loss of a single system branch. The proposed new algorithm provides a …

Contributors
Werho, Trevor Nelson, Vittal, Vijay, Heydt, Gerald, et al.
Created Date
2015

The flexibility in power system networks is not fully modeled in existing real-time contingency analysis (RTCA) and real-time security-constrained economic dispatch (RT SCED) applications. Thus, corrective transmission switching (CTS) is proposed in this dissertation to enable RTCA and RT SCED to take advantage of the flexibility in the transmission system in a practical way. RTCA is first conducted to identify critical contingencies that may cause violations. Then, for each critical contingency, CTS is performed to determine the beneficial switching actions that can reduce post-contingency violations. To reduce computational burden, fast heuristic algorithms are proposed to generate candidate switching lists. Numerical …

Contributors
Li, Xingpeng, Hedman, Kory, Heydt, Gerald, et al.
Created Date
2017

This dissertation presents innovative techniques to develop performance-based models and complete transient models of induction motor drive systems with vector controls in electro-magnetic transient (EMT) and positive sequence transient stability (PSTS) simulation programs. The performance-based model is implemented by obtaining the characteristic transfer functions of perturbed active and reactive power consumptions with respect to frequency and voltage perturbations. This level of linearized performance-based model is suitable for the investigation of the damping of small-magnitude low-frequency oscillations. The complete transient model is proposed by decomposing the motor, converter and control models into d-q axes components and developing a compatible electrical interface …

Contributors
Liu, Yuan, Vittal, Vijay, Undrill, John, et al.
Created Date
2016

Electric power system security assessment is one of the most important requirements for operational and resource planning of the bulk power system ensuring safe operation of the power system for all credible contingencies. This deterministic approach usually provides a conservative criterion and can result in expensive bulk system expansion plans or conservative operating limits. Furthermore, with increased penetration of converter-based renewable generation in the electric grid, the dynamics of the grid are changing. In addition, the variability and intermittency associated with the renewable energy sources introduce uncertainty in the electricity grid. Since security margins have direct economic impact on the …

Contributors
Datta, Sohom, Vittal, Vijay, Undrill, John, et al.
Created Date
2017

Corrective transmission topology control schemes are an essential part of grid operations and are used to improve the reliability of the grid as well as the operational efficiency. However, topology control schemes are frequently established based on the operator's past knowledge of the system as well as other ad-hoc methods. This research presents robust corrective topology control, which is a transmission switching methodology used for system reliability as well as to facilitate renewable integration. This research presents three topology control (corrective transmission switching) methodologies along with the detailed formulation of robust corrective switching. The robust model can be solved off-line …

Contributors
Korad, Akshay Shashikumar, Hedman, Kory W, Ayyanar, Raja, et al.
Created Date
2015

In the deregulated power system, locational marginal prices are used in transmission engineering predominantly as near real-time pricing signals. This work extends this concept to distribution engineering so that a distribution class locational marginal price might be used for real-time pricing and control of advanced control systems in distribution circuits. A formulation for the distribution locational marginal price signal is presented that is based on power flow sensitivities in a distribution system. A Jacobian-based sensitivity analysis has been developed for application in the distribution pricing method. Increasing deployment of distributed energy sources is being seen at the distribution level and …

Contributors
Ranganathan Sathyanarayana, Bharadwaj, Heydt, Gerald T, Vittal, Vijay, et al.
Created Date
2012

Voltage stability is always a major concern in power system operation. Recently Fault Induced Delayed Voltage Recovery (FIDVR) has gained increased attention. It is widely believed that the motor-driven loads of high efficiency, low inertia air conditioners are one of the main causes of FIDVR events. Simulation tools that assist power system operation and planning have been found insufficient to reproduce FIDVR events. This is because of their inaccurate load modeling of single-phase motor loads. Conventionally three-phase motor models have been used to represent the aggregation effect of single-phase motor load. However researchers have found that this modeling method is …

Contributors
Ma, Yan, Karady, George G, Vittal, Vijay, et al.
Created Date
2012