Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Date Range
2012 2019


Nanoparticle suspensions, popularly termed “nanofluids,” have been extensively investigated for their thermal and radiative properties. Such work has generated great controversy, although it is arguably accepted today that the presence of nanoparticles rarely leads to useful enhancements in either thermal conductivity or convective heat transfer. On the other hand, there are still examples of unanticipated enhancements to some properties, such as the reported specific heat of molten salt-based nanofluids and the critical heat flux. Another largely overlooked example is the apparent effect of nanoparticles on the effective latent heat of vaporization (hfg) of aqueous nanofluids. A previous study focused on …

Contributors
Lee, Soochan, Phelan, Patrick E, Wu, Carole-Jean, et al.
Created Date
2015

Material extrusion based rapid prototyping systems have been used to produceprototypes for several years. They have been quite important in the additive manufacturing field, and have gained popularity in research, development and manufacturing in a wide field of applications. There has been a lot of interest in using these technologies to produce end use parts, and Fused Deposition Modeling (FDM) has gained traction in leading the transition of rapid prototyping technologies to rapid manufacturing. But parts built with the FDM process exhibit property anisotropy. Many studies have been conducted into process optimization, material properties and even post processing of parts, …

Contributors
Kurapatti Ravi, Abinesh, Hao Hsu, Keng, Hildreth, Owen, et al.
Created Date
2016

A new class of layered materials called the transition metal trichalcogenides (TMTCs) exhibit strong anisotropic properties due to their quasi-1D nature. These 2D materials are composed of chain-like structures which are weakly bound to form planar sheets with highly directional properties. The vibrational properties of three materials from the TMTC family, specifically TiS3, ZrS3, and HfS3, are relatively unknown and studies performed in this work elucidates the origin of their Raman characteristics. The crystals were synthesized through chemical vapor transport prior to mechanical exfoliation onto Si/SiO¬2 substrates. XRD, AFM, and Raman spectroscopy were used to determine the crystallinity, thickness, and …

Contributors
Kong, Wilson, Tongay, Sefaattin, Wang, Liping, et al.
Created Date
2017

Solar energy is leading in renewable energy sources and the aspects surrounding the efforts to harvest light are gaining importance. One such aspect is increasing the light absorption, where heliotropism comes into play. Heliotropism, the ability to track the sun across the sky, can be integrated with solar cells for more efficient photon collection and other optoelectronic systems. Inspired by plants, which optimize incident sunlight in nature, several researchers have made artificial heliotropic and phototropic systems. This project aims to design, synthesize and characterize a material system and evaluate its application in a phototropic system. A gold nanoparticle (Au NP) …

Contributors
Gopalakrishna, Hamsini, He, Ximin, Holman, Zachary C, et al.
Created Date
2016

Durable, cost-effective, and environmentally friendly anti-icing methods are desired to reduce the icing hazard in many different industrial areas including transportation systems, power plants, power transmission, as well as offshore oil and gas production. In contrast to traditional passive anti-icing surfaces, this thesis work introduces an anti-icing coating that responds to different icing conditions by releasing an antifreeze liquid. It consists of an outer porous superhydrophobic epidermis and a wick-like underlying dermis that is infused with the antifreeze liquid. This bi-layer coating prevents accumulation of frost, freezing fog, and freezing rain, while conventional anti-icing surfaces typically work only in one …

Contributors
Sun, Xiaoda, Rykaczewski, Konrad, Lin, Jerry, et al.
Created Date
2017

Tesla turbo-machinery offers a robust, easily manufactured, extremely versatile prime mover with inherent capabilities making it perhaps the best, if not the only, solution for certain niche applications. The goal of this thesis is not to optimize the performance of the Tesla turbine, but to compare its performance with various working fluids. Theoretical and experimental analyses of a turbine-generator assembly utilizing compressed air, saturated steam and water as the working fluids were performed and are presented in this work. A brief background and explanation of the technology is provided along with potential applications. A theoretical thermodynamic analysis is outlined, resulting …

Contributors
Peshlakai, Aaron Ron, Phelan, Patrick, Trimble, Steven, et al.
Created Date
2012

Production from a high pressure gas well at a high production-rate encounters the risk of operating near the choking condition for a compressible flow in porous media. The unbounded gas pressure gradient near the point of choking, which is located near the wellbore, generates an effective tensile stress on the porous rock frame. This tensile stress almost always exceeds the tensile strength of the rock and it causes a tensile failure of the rock, leading to wellbore instability. In a porous rock, not all pores are choked at the same flow rate, and when just one pore is choked, the …

Contributors
Yuan, Jing, Chen, Kangping, Wang, Liping, et al.
Created Date
2013

Nanostructured materials show signicant enhancement in the thermoelectric g- ure of merit (zT) due to quantum connement eects. Improving the eciency of thermoelectric devices allows for the development of better, more economical waste heat recovery systems. Such systems may be used as bottoming or co-generation cycles in conjunction with conventional power cycles to recover some of the wasted heat. Thermal conductivity measurement systems are an important part of the char- acterization processes of thermoelectric materials. These systems must possess the capability of accurately measuring the thermal conductivity of both bulk and thin-lm samples at dierent ambient temperatures. This paper discusses …

Contributors
Jaber, Abbas, Wang, Robert, Wang, Liping, et al.
Created Date
2014

Photovoltaic modules degrade in the field. This thesis aims to answer two questions: 1. Do photovoltaic modules degrade linearly or not? 2. Do soiled modules operate at lower temperatures than clean modules? Answers to these questions are provided in part 1 and part 2 of this thesis respectively. Part 1: Linearity determination in degradation: The electricity output from PV power plants degrades every year. Generally, a system’s life is considered to last for 20-25 years and rate of degradation is commonly assumed as 1% per year. PV degradation can be found out using Performance Ratio (PR), Performance Index (PI) and …

Contributors
Patankar, Adit, Tamizhmani, Govindasamy, Wang, Liping, et al.
Created Date
2017

Soiling is one of the major environmental factors causing the negative performance of photovoltaic (PV) modules. Dust particles, air pollution particles, pollen, bird droppings and other industrial airborne particles are some natural sources that cause soiling. The thickness of soiling layer has a direct impact on the performance of PV modules. This phenomenon occurs over a period of time with many unpredictable environmental variables indicated above. This situation makes it difficult to calculate or predict the soiling effect on performance. The dust particles vary from one location to the other in terms of particle size, color and chemical composition. These …

Contributors
Mantha, Shanmukha Srinivas, Tamizhmani, Govindasamy, Phelan, Patrick, et al.
Created Date
2016

The proposed research mainly focuses on employing tunable materials to achieve dynamic control of radiative heat transfer in both far and near fields for thermal management. Vanadium dioxide (VO2), which undergoes a phase transition from insulator to metal at the temperature of 341 K, is one tunable material being applied. The other one is graphene, whose optical properties can be tuned by chemical potential through external bias or chemical doping. In the far field, a VO2-based metamaterial thermal emitter with switchable emittance in the mid-infrared has been theoretically studied. When VO2 is in the insulating phase, high emittance is observed …

Contributors
YANG, YUE, Wang, Liping, Phelan, Patrick, et al.
Created Date
2016

Solar photovoltaic (PV) industry is tipped to be one of the front-runners in the renewable industry. Typically, PV module manufacturers provide a linear or step warranty of 80% of original power over 25 years. This power loss during the field exposure is primarily attributed to the development of performance affecting defects in the PV modules. As many as 86 different defects can occur in a PV module. One of the major defects that can cause significant power loss is the interconnect metallization system (IMS) degradation which is the focus of this thesis. The IMS is composed of cell-interconnect (cell-ribbon interconnect) …

Contributors
Tummala, Abhishiktha, Tamizhmani, Govindasamy, Phelan, Patrick, et al.
Created Date
2016

In this study, two novel sorbents (zeolite 4A and sodium polyacrylate) are tested to investigate if utilizing ultrasonic acoustic energy could decrease the amount of time and overall energy required to regenerate these materials for use in cooling applications. To do this, an experiment was designed employing a cartridge heater and a piezoelectric element to be simultaneously providing heat and acoustic power to a custom designed desorption bed while measuring the bed mass and sorbent temperature at various locations. The results prove to be promising showing that early in the desorption process ultrasound may expedite the desorption process in zeolite …

Contributors
Bertrand, Weston Kyle, Phelan, Patrick, Bocanegra, Luis, et al.
Created Date
2018

Soft polymer composites with improved thermal conductivity are needed for the thermal management of electronics. Interfacial thermal boundary resistance, however, prevents the efficient use of many high thermal conductivity fill materials. Magnetic alignment of ferrous fill material enforces percolation of the high thermal conductivity fill, thereby shifting the governing boundary resistance to the particle- particle interfaces and increasing the directional thermal conductivity of the polymer composite. Magnetic alignment maximizes the thermal conductivity while minimizing composite stiffening at a fill fraction of half the maximum packing factor. The directional thermal conductivity of the composite is improved by more than 2-fold. Particle-particle …

Contributors
Ralphs, Matthew, Rykaczewski, Konrad, Wang, Robert Y, et al.
Created Date
2019

III-nitride InGaN light-emitting diodes (LEDs) enable wide range of applications in solid-state lighting, full-color displays, and high-speed visible-light communication. Conventional InGaN quantum well LEDs grown on polar c-plane substrate suffer from quantum confined Stark effect due to the large internal polarization-related fields, leading to a reduced radiative recombination rate and device efficiency, which limits the performance of InGaN LEDs in high-speed communication applications. To circumvent these negative effects, non-trivial-cavity designs such as flip-chip LEDs, metallic grating coated LEDs are proposed. This oral defense will show the works on the high-modulation-speed LEDs from basic ideas to applications. Fundamental principles such as …

Contributors
Chen, Hong, Zhao, Yuji, Yao, Yu, et al.
Created Date
2016

Organic electronics have remained a research topic of great interest over the past few decades, with organic light emitting diodes (OLEDs) emerging as a disruptive technology for lighting and display applications. While OLED performance has improved significantly over the past decade, key issues remain unsolved such as the development of stable and efficient blue devices. In order to further the development of OLEDs and increase their commercial potential, innovative device architectures, novel emissive materials and high-energy hosts are designed and reported. OLEDs employing step-wide graded-doped emissive layers were designed to improve charge balance and center the exciton formation zone leading …

Contributors
Klimes, Kody, Li, Jian, Adams, James, et al.
Created Date
2019

Just for a moment! Imagine you live in Arizona without air-conditioning systems! Air-conditioning and refrigeration systems are one of the most crucial systems in anyone’s house and car these days. Energy resources are becoming more scarce and expensive. Most of the currently used refrigerants have brought an international concern about global warming. The search for more efficient cooling/refrigeration systems with environmental friendly refrigerants has become more and more important so as to reduce greenhouse gas emissions and ensure sustainable and affordable energy systems. The most widely used air-conditioning and refrigeration system, based on the vapor compression cycle, is driven by …

Contributors
ALELYANI, Sami Mohammed, Phelan, Patrick E, Wang, Liping, et al.
Created Date
2018

The residential building sector accounts for more than 26% of the global energy consumption and 17% of global CO2 emissions. Due to the low cost of electricity in Kuwait and increase of population, Kuwaiti electricity consumption tripled during the past 30 years and is expected to increase by 20% by 2027. In this dissertation, a framework is developed to assess energy savings techniques to help policy-makers make educated decisions. The Kuwait residential energy outlook is studied by modeling the baseline energy consumption and the diffusion of energy conservation measures (ECMs) to identify the impacts on household energy consumption and CO2 …

Contributors
Alajmi, Turki, Phelan, Patrick E, Kaloush, Kamil, et al.
Created Date
2019

Mechanical behavior of metallic thin films at room temperature (RT) is relatively well characterized. However, measuring the high temperature mechanical properties of thin films poses several challenges. These include ensuring uniformity in sample temperature and minimizing temporal fluctuations due to ambient heat loss, in addition to difficulties involved in mechanical testing of microscale samples. To address these issues, we designed and analyzed a MEMS-based high temperature tensile testing stage made from single crystal silicon. The freestanding thin film specimens were co-fabricated with the stage to ensure uniaxial loading. Multi-physics simulations of Joule heating, incorporating both radiation and convection heat transfer, …

Contributors
Eswarappa Prameela, Suhas, Rajagopalan, Jagannathan, Wang, Liping, et al.
Created Date
2016

The energy crisis in the past decades has greatly boosted the search for alternatives to traditional fossil foils, and solar energy stands out as an important candidate due to its cleanness and abundance. However, the relatively low conversion efficiency and energy density strongly hinder the utilization of solar energy in wider applications. This thesis focuses on employing metamaterials and metafilms to enhance the conversion efficiency of solar thermal, solar thermophotovoltaic (STPV) and photovoltaic systems. A selective metamaterial solar absorber is designed in this thesis to maximize the absorbed solar energy and minimize heat dissipation through thermal radiation. The theoretically designed …

Contributors
Wang, Hao, Wang, Liping, Phelan, Patrick, et al.
Created Date
2016