Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Date Range
2010 2018


Online social networks, including Twitter, have expanded in both scale and diversity of content, which has created significant challenges to the average user. These challenges include finding relevant information on a topic and building social ties with like-minded individuals. The fundamental question addressed by this thesis is if an individual can leverage social network to search for information that is relevant to him or her. We propose to answer this question by developing computational algorithms that analyze a user's social network. The features of the social network we analyze include the network topology and member communications of a specific user's …

Contributors
Xu, Ke, Sundaram, Hari, Ye, Jieping, et al.
Created Date
2010

Advances in the area of ubiquitous, pervasive and wearable computing have resulted in the development of low band-width, data rich environmental and body sensor networks, providing a reliable and non-intrusive methodology for capturing activity data from humans and the environments they inhabit. Assistive technologies that promote independent living amongst elderly and individuals with cognitive impairment are a major motivating factor for sensor-based activity recognition systems. However, the process of discerning relevant activity information from these sensor streams such as accelerometers is a non-trivial task and is an on-going research area. The difficulty stems from factors such as spatio-temporal variations in …

Contributors
Chatapuram Krishnan, Narayanan, Panchanathan, Sethuraman, Sundaram, Hari, et al.
Created Date
2010

Natural Language Processing is a subject that combines computer science and linguistics, aiming to provide computers with the ability to understand natural language and to develop a more intuitive human-computer interaction. The research community has developed ways to translate natural language to mathematical formalisms. It has not yet been shown, however, how to automatically translate different kinds of knowledge in English to distinct formal languages. Most of the recent work presents the problem that the translation method aims to a specific formal language or is hard to generalize. In this research, I take a first step to overcome this difficulty …

Contributors
Alvarez Gonzalez, Marcos, Baral, Chitta, Lee, Joohyung, et al.
Created Date
2010

The fields of pattern recognition and machine learning are on a fundamental quest to design systems that can learn the way humans do. One important aspect of human intelligence that has so far not been given sufficient attention is the capability of humans to express when they are certain about a decision, or when they are not. Machine learning techniques today are not yet fully equipped to be trusted with this critical task. This work seeks to address this fundamental knowledge gap. Existing approaches that provide a measure of confidence on a prediction such as learning algorithms based on the …

Contributors
Nallure Balasubramanian, Vineeth, Panchanathan, Sethuraman, Ye, Jieping, et al.
Created Date
2010

Prognostics and health management (PHM) is a method that permits the reliability of a system to be evaluated in its actual application conditions. This work involved developing a robust system to determine the advent of failure. Using the data from the PHM experiment, a model was developed to estimate the prognostic features and build a condition based system based on measured prognostics. To enable prognostics, a framework was developed to extract load parameters required for damage assessment from irregular time-load data. As a part of the methodology, a database engine was built to maintain and monitor the experimental data. This …

Contributors
Varadarajan, Gayathri, Liu, Huan, Ye, Jieping, et al.
Created Date
2010

With the introduction of compressed sensing and sparse representation,many image processing and computer vision problems have been looked at in a new way. Recent trends indicate that many challenging computer vision and image processing problems are being solved using compressive sensing and sparse representation algorithms. This thesis assays some applications of compressive sensing and sparse representation with regards to image enhancement, restoration and classication. The first application deals with image Super-Resolution through compressive sensing based sparse representation. A novel framework is developed for understanding and analyzing some of the implications of compressive sensing in reconstruction and recovery of an image …

Contributors
Kulkarni, Naveen, Li, Baoxin, Ye, Jieping, et al.
Created Date
2011

Reliable extraction of human pose features that are invariant to view angle and body shape changes is critical for advancing human movement analysis. In this dissertation, the multifactor analysis techniques, including the multilinear analysis and the multifactor Gaussian process methods, have been exploited to extract such invariant pose features from video data by decomposing various key contributing factors, such as pose, view angle, and body shape, in the generation of the image observations. Experimental results have shown that the resulting pose features extracted using the proposed methods exhibit excellent invariance properties to changes in view angles and body shapes. Furthermore, …

Contributors
Peng, Bo, Qian, Gang, Ye, Jieping, et al.
Created Date
2011

Bridging semantic gap is one of the fundamental problems in multimedia computing and pattern recognition. The challenge of associating low-level signal with their high-level semantic interpretation is mainly due to the fact that semantics are often conveyed implicitly in a context, relying on interactions among multiple levels of concepts or low-level data entities. Also, additional domain knowledge may often be indispensable for uncovering the underlying semantics, but in most cases such domain knowledge is not readily available from the acquired media streams. Thus, making use of various types of contextual information and leveraging corresponding domain knowledge are vital for effectively …

Contributors
Wang, Zheshen, Li, Baoxin, Sundaram, Hari, et al.
Created Date
2011

Genes have widely different pertinences to the etiology and pathology of diseases. Thus, they can be ranked according to their disease-significance on a genomic scale, which is the subject of gene prioritization. Given a set of genes known to be related to a disease, it is reasonable to use them as a basis to determine the significance of other candidate genes, which will then be ranked based on the association they exhibit with respect to the given set of known genes. Experimental and computational data of various kinds have different reliability and relevance to a disease under study. This work …

Contributors
Lee, Jang, Gonzalez, Graciela, Ye, Jieping, et al.
Created Date
2011

Cloud computing has received significant attention recently as it is a new computing infrastructure to enable rapid delivery of computing resources as a utility in a dynamic, scalable, and visualized manner. SaaS (Software-as-a-Service) provide a now paradigm in cloud computing, which goal is to provide an effective and intelligent way to support end users' on-demand requirements to computing resources, including maturity levels of customizable, multi-tenancy and scalability. To meet requirements of on-demand, my thesis discusses several critical research problems and proposed solutions using real application scenarios. Service providers receive multiple requests from customers, how to prioritize those service requests to …

Contributors
Shao, Qihong, Tsai, Wei-Tek, Askin, Ronald, et al.
Created Date
2011

Sparse learning is a technique in machine learning for feature selection and dimensionality reduction, to find a sparse set of the most relevant features. In any machine learning problem, there is a considerable amount of irrelevant information, and separating relevant information from the irrelevant information has been a topic of focus. In supervised learning like regression, the data consists of many features and only a subset of the features may be responsible for the result. Also, the features might require special structural requirements, which introduces additional complexity for feature selection. The sparse learning package, provides a set of algorithms for …

Contributors
Thulasiram, Ramesh L., Ye, Jieping, Xue, Guoliang, et al.
Created Date
2011

This thesis research attempts to observe, measure and visualize the communication patterns among developers of an open source community and analyze how this can be inferred in terms of progress of that open source project. Here I attempted to analyze the Ubuntu open source project's email data (9 subproject log archives over a period of five years) and focused on drawing more precise metrics from different perspectives of the communication data. Also, I attempted to overcome the scalability issue by using Apache Pig libraries, which run on a MapReduce framework based Hadoop Cluster. I described four metrics based on which …

Contributors
Motamarri, Lakshminarayana, Santanam, Raghu, Ye, Jieping, et al.
Created Date
2011

Real-world environments are characterized by non-stationary and continuously evolving data. Learning a classification model on this data would require a framework that is able to adapt itself to newer circumstances. Under such circumstances, transfer learning has come to be a dependable methodology for improving classification performance with reduced training costs and without the need for explicit relearning from scratch. In this thesis, a novel instance transfer technique that adapts a "Cost-sensitive" variation of AdaBoost is presented. The method capitalizes on the theoretical and functional properties of AdaBoost to selectively reuse outdated training instances obtained from a "source" domain to effectively …

Contributors
Venkatesan, Ashok, Panchanathan, Sethuraman, Li, Baoxin, et al.
Created Date
2011

Multi-label learning, which deals with data associated with multiple labels simultaneously, is ubiquitous in real-world applications. To overcome the curse of dimensionality in multi-label learning, in this thesis I study multi-label dimensionality reduction, which extracts a small number of features by removing the irrelevant, redundant, and noisy information while considering the correlation among different labels in multi-label learning. Specifically, I propose Hypergraph Spectral Learning (HSL) to perform dimensionality reduction for multi-label data by exploiting correlations among different labels using a hypergraph. The regularization effect on the classical dimensionality reduction algorithm known as Canonical Correlation Analysis (CCA) is elucidated in this …

Contributors
Sun, Liang, Ye, Jieping, Li, Baoxin, et al.
Created Date
2011

Multi-task learning (MTL) aims to improve the generalization performance (of the resulting classifiers) by learning multiple related tasks simultaneously. Specifically, MTL exploits the intrinsic task relatedness, based on which the informative domain knowledge from each task can be shared across multiple tasks and thus facilitate the individual task learning. It is particularly desirable to share the domain knowledge (among the tasks) when there are a number of related tasks but only limited training data is available for each task. Modeling the relationship of multiple tasks is critical to the generalization performance of the MTL algorithms. In this dissertation, I propose …

Contributors
Chen, Jianhui, Ye, Jieping, Kumar, Sudhir, et al.
Created Date
2011

Detecting anatomical structures, such as the carina, the pulmonary trunk and the aortic arch, is an important step in designing a CAD system of detection Pulmonary Embolism. The presented CAD system gets rid of the high-level prior defined knowledge to become a system which can easily extend to detect other anatomic structures. The system is based on a machine learning algorithm --- AdaBoost and a general feature --- Haar. This study emphasizes on off-line and on-line AdaBoost learning. And in on-line AdaBoost, the thesis further deals with extremely imbalanced condition. The thesis first reviews several knowledge-based detection methods, which are …

Contributors
Wu, Hong, Liang, Jianming, Farin, Gerald, et al.
Created Date
2011

Drosophila melanogaster, as an important model organism, is used to explore the mechanism which governs cell differentiation and embryonic development. Understanding the mechanism will help to reveal the effects of genes on other species or even human beings. Currently, digital camera techniques make high quality Drosophila gene expression imaging possible. On the other hand, due to the advances in biology, gene expression images which can reveal spatiotemporal patterns are generated in a high-throughput pace. Thus, an automated and efficient system that can analyze gene expression will become a necessary tool for investigating the gene functions, interactions and developmental processes. One …

Contributors
Pan, Cheng, Ye, Jieping, Li, Baoxin, et al.
Created Date
2012

Rapid advance in sensor and information technology has resulted in both spatially and temporally data-rich environment, which creates a pressing need for us to develop novel statistical methods and the associated computational tools to extract intelligent knowledge and informative patterns from these massive datasets. The statistical challenges for addressing these massive datasets lay in their complex structures, such as high-dimensionality, hierarchy, multi-modality, heterogeneity and data uncertainty. Besides the statistical challenges, the associated computational approaches are also considered essential in achieving efficiency, effectiveness, as well as the numerical stability in practice. On the other hand, some recent developments in statistics and …

Contributors
Huang, Shuai, Li, Jing, Li, Jing, et al.
Created Date
2012

Alzheimer's Disease (AD) is the most common form of dementia observed in elderly patients and has significant social-economic impact. There are many initiatives which aim to capture leading causes of AD. Several genetic, imaging, and biochemical markers are being explored to monitor progression of AD and explore treatment and detection options. The primary focus of this thesis is to identify key biomarkers to understand the pathogenesis and prognosis of Alzheimer's Disease. Feature selection is the process of finding a subset of relevant features to develop efficient and robust learning models. It is an active research topic in diverse areas such …

Contributors
Dubey, Rashmi, Ye, Jieping, Wang, Yalin, et al.
Created Date
2012

Medical images constitute a special class of images that are captured to allow diagnosis of disease, and their "correct" interpretation is vitally important. Because they are not "natural" images, radiologists must be trained to visually interpret them. This training process includes implicit perceptual learning that is gradually acquired over an extended period of exposure to medical images. This dissertation proposes novel computational methods for evaluating and facilitating perceptual training in radiologists. Part 1 of this dissertation proposes an eye-tracking-based metric for measuring the training progress of individual radiologists. Six metrics were identified as potentially useful: time to complete task, fixation …

Contributors
Alzubaidi, Mohammad Abdulhadi Moh'D, Panchanathan, Sethuraman, Black, John A, et al.
Created Date
2012