Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Subject
Date Range
2011 2019


This dissertation presents a systematic study of the sorption mechanisms of hydrophobic silica aerogel (Cabot Nanogel®) granules for oil and volatile organic compounds (VOCs) in different phases. The performance of Nanogel for removing oil from laboratory synthetic oil-in-water emulsions and real oily wastewater, and VOCs from their aqueous solution, in both packed bed (PB) and inverse fluidized bed (IFB) modes was also investigated. The sorption mechanisms of VOCs in the vapor, pure liquid, and aqueous solution phases, free oil, emulsified oil, and oil from real wastewater on Nanogel were systematically studied via batch kinetics and equilibrium experiments. The VOC results …

Contributors
Wang, Ding, Lin, Jerry Y.S., Pfeffer, Robert, et al.
Created Date
2011

Mesoporous materials that possess large surface area, tunable pore size, and ordered structures are attractive features for many applications such as adsorption, protein separation, enzyme encapsulation and drug delivery as these materials can be tailored to host different guest molecules. Films provide a model system to understand how the pore orientation impacts the potential for loading and release of selectively sized molecules. This research work aims to develop structure-property relationships to understand how pore size, geometry, and surface hydrophobicity influence the loading and release of drug molecules. In this study, the pore size is systematically varied by incorporating pore-swelling agent …

Contributors
Labiano, Alpha Chavez, Vogt, Bryan, Rege, Kaushal, et al.
Created Date
2011

ABSTRACT The heat recovery steam generator (HRSG) is a key component of Combined Cycle Power Plants (CCPP). The exhaust (flue gas) from the CCPP gas turbine flows through the HRSG − this gas typically contains a high concentration of NO and cannot be discharged directly to the atmosphere because of environmental restrictions. In the HRSG, one method of reducing the flue gas NO concentration is to inject ammonia into the gas at a plane upstream of the Selective Catalytic Reduction (SCR) unit through an injection grid (AIG); the SCR is where the NO is reduced to N2 and H2O. The …

Contributors
Adulkar, Sajesh B., Roy, Ramendra, Lee, Taewoo, et al.
Created Date
2011

Gold nanoparticles as potential diagnostic, therapeutic and sensing systems have a long history of use in medicine, and have expanded to a variety of applications. Gold nanoparticles are attractive in biological applications due to their unique optical, chemical and biological properties. Particularly, gold nanorods (GNRs) are increasingly used due to superior optical property in the near infrared (NIR) window. Light absorbed by the nanorod can be dissipated as heat efficiently or re-emitted by the particle. However, the limitations for clinical translation of gold nanorods include low yields, poor stability, depth-restricted imaging, and resistance of cancer cells to hyperthermia, are severe. …

Contributors
Huang, Huang-Chiao, Rege, Kaushal, Sierks, Michael, et al.
Created Date
2012

The effects of specific histone deacetylase inhibitors (HDACi) on transgene expression in combination with a novel polymer as a delivery vehicle are investigated in this research. Polymer vectors, although safer than viruses, are notorious for low levels of gene expression. In this investigation, the use of an emerging chemotherapeutic anti-cancer drug molecule, HDACi, was used to enhance the polymer-mediated gene expression. HDACi are capable of inhibiting deacetylation activities of histones and other non-histone proteins in the cytoplasm and nucleus, as well as increase transcriptional activities necessary for gene expression. In a prior study, a parallel synthesis and screening of polymers …

Contributors
Lehrman, Jennifer Nicole, Rege, Kaushal, Caplan, Michael, et al.
Created Date
2012

Electronic devices based on various stimuli responsive polymers are anticipated to have great potential for applications in innovative electronics due to their inherent intelligence and flexibility. However, the electronic properties of these soft materials are poor and the applications have been limited due to their weak compatibility with functional materials. Therefore, the integration of stimuli responsive polymers with other functional materials like Silicon is strongly demanded. Here, we present successful strategies to integrate environmentally sensitive hydrogels with Silicon, a typical high-performance electronic material, and demonstrate the intelligent and stretchable capability of this system. The goal of this project is to …

Contributors
Pan, Yuping, Dai, Lenore, Jiang, Hanqing, et al.
Created Date
2012

ABSTRACT Among the major applications of pervaporation membrane processes, organic separation from organic/water mixtures is becoming increasingly important. The polydimethylsiloxane (PDMS) is among the most interesting and promising membranes and has been extensively investigated. PDMS is an "organicelastomeric material, often referred to as "silicone rubber", exhibiting excellent film-forming ability, thermal stability, chemical and physiological inertness. In this thesis incorporation of nanosilicalite-1 particles into a PDMS matrix and effect of particle loading and temperature variation on membrane performance was studied. A strong influence of zeolite was found on the pervaporation of alcohol/water mixtures using filled PDMS membranes. The mixed matrix membrane …

Contributors
Yadav, Amit Binodkumar, Lind, Mary L, Lin, Jerry Ys, et al.
Created Date
2012

Due to depletion of oil resources, increasing fuel prices and environmental issues associated with burning of fossil fuels, extensive research has been performed in biofuel production and dramatic progress has been made. But still problems exist in economically production of biofuels. One major problem is recovery of biofuels from fermentation broth with the relatively low product titer achieved. A lot of in situ product recovery techniques including liquid-liquid extraction, membrane extraction, pervaporation, gas stripping and adsorption have been developed and adsorption is shown to be the most promising one compared to other methods. Yet adsorption is not perfect due to …

Contributors
Wang, Yuchen, Nielsen, David Ross, Andino, Jean, et al.
Created Date
2012

Over the past years, an interest has arisen in resolving two major issues: increased carbon dioxide (CO2) emissions and depleting energy resources. A convenient solution would be a process that could simultaneously use CO2 while producing energy. The photocatalytic reduction of CO2 to fuels over the photocatalyst titanium dioxide (TiO2) is such a process. However, this process is presently inefficient and unsuitable for industrial applications. A step toward making this process more effective is to alter TiO2 based photocatalysts to improve their activity. The interactions of CO2 with oxygen-deficient and unmodified (210) surfaces of brookite TiO2 were studied using first-principle …

Contributors
Rodriguez, Monique M., Andino, Jean M, Nielsen, David R, et al.
Created Date
2012

The diversity of industrially important chemicals that can be produced biocatalytically from renewable resources continues to expand with the aid of metabolic and pathway engineering. In addition to biofuels, these chemicals also include a number of monomers with utility in conventional and novel plastic materials production. Monomers used for polyamide production are no exception, as evidenced by the recent engineering of microbial biocatalysts to produce cadaverine, putrescine, and succinate. In this thesis the repertoire and depth of these renewable polyamide precursors is expanded upon through the engineering of a novel pathway that enables Escherichia coli to produce, as individual products, …

Contributors
Adkins, Jake, Nielsen, David R., Caplan, Michael, et al.
Created Date
2012

The disordered nature of glass-forming melts results in two features for its dynamics i.e. non-Arrhenius and non-exponential behavior. Their macroscopic properties are studied through observing spatial heterogeneity of the molecular relaxation. Experiments performed in a low-frequency range tracks the flow of energy in time on slow degrees of freedom and transfer to the vibrational heat bath of the liquid, as is the case for microwave heating. High field measurements on supercooled liquids result in generation of fictive temperatures of the absorbing modes which eventually result in elevated true bath temperatures. The absorbed energy allows us to quantify the changes in …

Contributors
Pathak, Ullas, Richert, Ranko, Dai, Lenore, et al.
Created Date
2012

Volatile Organic Compounds (VOCs) are central to atmospheric chemistry and have significant impacts on the environment. The reaction of oxygenated VOCs with OH radicals was first studied to understand the fate of oxygenated VOCs. The rate constants of the gas-phase reaction of OH radicals with trans-2-hexenal, trans-2-octenal, and trans-2 nonenal were determined using the relative rate technique. Then the interactions between VOCs and ionic liquid surfaces were studied. The goal was to find a material to selectively detect alcohol compounds. Computational chemistry calculations were performed to investigate the interactions of ionic liquids with different classes of VOCs. The thermodynamic data …

Contributors
Gao, Tingting, Andino, Jean M, Forzani, Erica, et al.
Created Date
2012

Nanoparticles are ubiquitous in various fields due to their unique properties not seen in similar bulk materials. Among them, core-shell composite nanoparticles are an important class of materials which are attractive for their applications in catalysis, sensing, electromagnetic shielding, drug delivery, and environmental remediation. This dissertation focuses on the study of core-shell type of nanoparticles where a polymer serves as the core and inorganic nanoparticles are the shell. This is an interesting class of supramolecular building blocks and can "exhibit unusual, possibly unique, properties which cannot be obtained simply by co-mixing polymer and inorganic particles". The one-step Pickering emulsion polymerization …

Contributors
Sanyal, Sriya, Dai, Lenore L., Jiang, Hanqing, et al.
Created Date
2012

This dissertation provides a fundamental understanding of the properties of mesoporous carbon based materials and the utilization of those properties into different applications such as electrodes materials for super capacitors, adsorbents for water treatments and biosensors. The thickness of mesoporous carbon films on Si substrates are measured by Ellipsometry method and pore size distribution has been calculated by Kelvin equation based on toluene adsorption and desorption isotherms monitored by Ellipsometer. The addition of organometallics cobalt and vanalyl acetylacetonate in the synthesis precursor leads to the metal oxides in the carbon framework, which largely decreased the shrink of the framework during …

Contributors
Dai, Mingzhi, Vogt, Bryan D, La Belle, Jeffrey T, et al.
Created Date
2012

The mitigation and conversion of carbon dioxide (CO2) to more useful carbon chemicals is a research topic that is at the forefront of current engineering and sustainability applications. Direct photocatalytic reduction of CO2 with water (H2O) vapor to C1-C4 hydrocarbons has significant potential in setting substantial groundwork for meeting the increasing energy demands with minimal environmental impact. Previous studies indicate that titanium dioxide (TiO2) containing materials serve as the best photocatalyst for CO2 and H2O conversion to higher-value products. An understanding of the CO2-H2O reaction mechanism over TiO2 materials allows one to increase the yield of certain products such as …

Contributors
Rollins, Selisa, Andino, Jean M, Dai, Lenore L, et al.
Created Date
2012

In today's world where sustainability is of prime importance, energy efficient method for sea water desalination and waste water treatment is gaining attention. State of art Reverse Osmosis (RO) method has high power consumption; hence people are diverting their attention towards Forward Osmosis (FO). It has been determined that the support membrane hydrophilicity plays an important role impacting the water flux through membranes in forward osmosis processes. The support layer of commercially available thin film composite RO membranes has been modified with a hydrophilic polymer Polyvinyl Alcohol (PVA). Previous research has demonstrated that PVA coating of the top selective layer …

Contributors
Saraf, Aditi, Lind, Dr. Mary, Dai, Dr. Lenore, et al.
Created Date
2012

The use of petroleum for liquid-transportation fuels has strained the environment and caused the global crude oil reserves to diminish. Therefore, there exists a need to replace petroleum as the primary fuel derivative. Butanol is a four-carbon alcohol that can be used to effectively replace gasoline without changing the current automotive infrastructure. Additionally, butanol offers the same environmentally friendly effects as ethanol, but possess a 23% higher energy density. Clostridium acetobutylicum is an anaerobic bacterium that can ferment renewable biomass-derived sugars into butanol. However, this fermentation becomes limited by relatively low butanol concentrations (1.3% w/v), making this process uneconomical. To …

Contributors
Wiehn, Michael, Nielsen, David, Lin, Jerry, et al.
Created Date
2013

Alzheimer's disease (AD) is the leading neurodegenerative disease, affecting roughly 8% of people 65 years of age or older. There exists an imperative need to develop a non-invasive test for the earlier detection of AD. The use of biomarkers is a promising option that examines the toxic mechanisms and metabolic pathways that cause Alzheimer's disease, eventually leading to an early diagnostic method. This thesis presents the use of oligomeric beta-amyloid as a biomarker to detect Alzheimer's disease via a specialized enzyme-linked protein assay. Specifically, this paper details the optimization and development of a novel phage capture enzyme-linked immunosorbent assay (ELISA) …

Contributors
Brownlee, Taylor, Sierks, Michael, Williams, Stephanie, et al.
Created Date
2013

Cancer is the second leading cause of death in the United States and novel methods of treating advanced malignancies are of high importance. Of these deaths, prostate cancer and breast cancer are the second most fatal carcinomas in men and women respectively, while pancreatic cancer is the fourth most fatal in both men and women. Developing new drugs for the treatment of cancer is both a slow and expensive process. It is estimated that it takes an average of 15 years and an expense of $800 million to bring a single new drug to the market. However, it is also …

Contributors
Taylor, David, Rege, Kaushal, Jayaraman, Arul, et al.
Created Date
2013

Liquid-liquid interfaces serve as ideal 2-D templates on which solid particles can self-assemble into various structures. These self-assembly processes are important in fabrication of micron-sized devices and emulsion formulation. At oil/water interfaces, these structures can range from close-packed aggregates to ordered lattices. By incorporating an ionic liquid (IL) at the interface, new self-assembly phenomena emerge. ILs are ionic compounds that are liquid at room temperature (essentially molten salts at ambient conditions) that have remarkable properties such as negligible volatility and high chemical stability and can be optimized for nearly any application. The nature of IL-fluid interfaces has not yet been …

Contributors
Frost, Denzil Scott, Dai, Lenore L, Torres, Cesar I, et al.
Created Date
2013