Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Subject
Date Range
2010 2018


Research has shown that the learning processes can be enriched and enhanced with the presence of affective interventions. The goal of this dissertation was to design, implement, and evaluate an affective agent that provides affective support in real-time in order to enrich the student’s learning experience and performance by inducing and/or maintaining a productive learning path. This work combined research and best practices from affective computing, intelligent tutoring systems, and educational technology to address the design and implementation of an affective agent and corresponding pedagogical interventions. It included the incorporation of the affective agent into an Exploratory Learning Environment (ELE) …

Contributors
Chavez Echeagaray, Maria Elena, Atkinson, Robert K, Burleson, Winslow, et al.
Created Date
2018

Web applications continue to remain as the most popular method of interaction for businesses over the Internet. With it's simplicity of use and management, they often function as the "front door" for many companies. As such, they are a critical component of the security ecosystem as vulnerabilities present in these systems could potentially allow malicious users access to sensitive business and personal data. The inherent nature of web applications enables anyone to access them anytime and anywhere, this includes any malicious actors looking to exploit vulnerabilities present in the web application. In addition, the static configurations of these web applications …

Contributors
Taguinod, Marthony, Ahn, Gail-Joon, Doupé, Adam, et al.
Created Date
2018

One of the primary objective in a computer science related course is for students to be able to write programs implementing the concepts covered in that course. In educational psychology, however, learning gains are more commonly measured using recall or problem solving questions. While these types of questions are relevant to computer science exams, they do not necessarily reflect a student’s ability to apply concepts by writing an original program to solve a novel problem. This thesis investigates the effectiveness of including questions within instructional multimedia content to improve student performance on a related programming assignment. Similar techniques have proven …

Contributors
Mar, Christopher, Sohoni, Sohum, Nelson, Brian C, et al.
Created Date
2016

We solve the problem of activity verification in the context of sustainability. Activity verification is the process of proving the user assertions pertaining to a certain activity performed by the user. Our motivation lies in incentivizing the user for engaging in sustainable activities like taking public transport or recycling. Such incentivization schemes require the system to verify the claim made by the user. The system verifies these claims by analyzing the supporting evidence captured by the user while performing the activity. The proliferation of portable smart-phones in the past few years has provided us with a ubiquitous and relatively cheap …

Contributors
Desai, Vaishnav Jagannath, Sundaram, Hari, Li, Baoxin, et al.
Created Date
2013

In recent years we have witnessed a shift towards multi-processor system-on-chips (MPSoCs) to address the demands of embedded devices (such as cell phones, GPS devices, luxury car features, etc.). Highly optimized MPSoCs are well-suited to tackle the complex application demands desired by the end user customer. These MPSoCs incorporate a constellation of heterogeneous processing elements (PEs) (general purpose PEs and application-specific integrated circuits (ASICS)). A typical MPSoC will be composed of a application processor, such as an ARM Coretex-A9 with cache coherent memory hierarchy, and several application sub-systems. Each of these sub-systems are composed of highly optimized instruction processors, graphics/DSP …

Contributors
Leary, Glenn, Chatha, Karamvir S, Vrudhula, Sarma, et al.
Created Date
2013

The Game As Life - Life As Game (GALLAG) project investigates how people might change their lives if they think of and/or experience their life as a game. The GALLAG system aims to help people reach their personal goals through the use of context-aware computing, and tailored games and applications. To accomplish this, the GALLAG system uses a combination of sensing technologies, remote audio/video feedback, mobile devices and an application programming interface (API) to empower users to create their own context-aware applications. However, the API requires programming through source code, a task that is too complicated and abstract for many …

Contributors
Garduno Massieu, Luis, Burleson, Winslow, Hekler, Eric, et al.
Created Date
2012

Sparse learning is a technique in machine learning for feature selection and dimensionality reduction, to find a sparse set of the most relevant features. In any machine learning problem, there is a considerable amount of irrelevant information, and separating relevant information from the irrelevant information has been a topic of focus. In supervised learning like regression, the data consists of many features and only a subset of the features may be responsible for the result. Also, the features might require special structural requirements, which introduces additional complexity for feature selection. The sparse learning package, provides a set of algorithms for …

Contributors
Thulasiram, Ramesh L., Ye, Jieping, Xue, Guoliang, et al.
Created Date
2011

This thesis research attempts to observe, measure and visualize the communication patterns among developers of an open source community and analyze how this can be inferred in terms of progress of that open source project. Here I attempted to analyze the Ubuntu open source project's email data (9 subproject log archives over a period of five years) and focused on drawing more precise metrics from different perspectives of the communication data. Also, I attempted to overcome the scalability issue by using Apache Pig libraries, which run on a MapReduce framework based Hadoop Cluster. I described four metrics based on which …

Contributors
Motamarri, Lakshminarayana, Santanam, Raghu, Ye, Jieping, et al.
Created Date
2011

Real-world environments are characterized by non-stationary and continuously evolving data. Learning a classification model on this data would require a framework that is able to adapt itself to newer circumstances. Under such circumstances, transfer learning has come to be a dependable methodology for improving classification performance with reduced training costs and without the need for explicit relearning from scratch. In this thesis, a novel instance transfer technique that adapts a "Cost-sensitive" variation of AdaBoost is presented. The method capitalizes on the theoretical and functional properties of AdaBoost to selectively reuse outdated training instances obtained from a "source" domain to effectively …

Contributors
Venkatesan, Ashok, Panchanathan, Sethuraman, Li, Baoxin, et al.
Created Date
2011

Internet sites that support user-generated content, so-called Web 2.0, have become part of the fabric of everyday life in technologically advanced nations. Users collectively spend billions of hours consuming and creating content on social networking sites, weblogs (blogs), and various other types of sites in the United States and around the world. Given the fundamentally emotional nature of humans and the amount of emotional content that appears in Web 2.0 content, it is important to understand how such websites can affect the emotions of users. This work attempts to determine whether emotion spreads through an online social network (OSN). To …

Contributors
Cole, William David, Liu, Huan, Sarjoughian, Hessam, et al.
Created Date
2011

Multi-label learning, which deals with data associated with multiple labels simultaneously, is ubiquitous in real-world applications. To overcome the curse of dimensionality in multi-label learning, in this thesis I study multi-label dimensionality reduction, which extracts a small number of features by removing the irrelevant, redundant, and noisy information while considering the correlation among different labels in multi-label learning. Specifically, I propose Hypergraph Spectral Learning (HSL) to perform dimensionality reduction for multi-label data by exploiting correlations among different labels using a hypergraph. The regularization effect on the classical dimensionality reduction algorithm known as Canonical Correlation Analysis (CCA) is elucidated in this …

Contributors
Sun, Liang, Ye, Jieping, Li, Baoxin, et al.
Created Date
2011

In order to catch the smartest criminals in the world, digital forensics examiners need a means of collaborating and sharing information with each other and outside experts that is not prohibitively difficult. However, standard operating procedures and the rules of evidence generally disallow the use of the collaboration software and techniques that are currently available because they do not fully adhere to the dictated procedures for the handling, analysis, and disclosure of items relating to cases. The aim of this work is to conceive and design a framework that provides a completely new architecture that 1) can perform fundamental functions …

Contributors
Mabey, Michael Kent, Ahn, Gail-Joon, Yau, Stephen S, et al.
Created Date
2011

Navigating within non-linear structures is a challenge for all users when the space is large but the problem is most pronounced when the users are blind or visually impaired. Such users access digital content through screen readers like JAWS which read out the text on the screen. However presentation of non-linear narratives in such a manner without visual cues and information about spatial dependencies is very inefficient for such users. The NSDL Science Literacy StrandMaps are visual layouts to help students and teachers browse educational resources. A Strandmap shows relationships between concepts and how they build upon one another across …

Contributors
Gaur, Shruti, Candan, Kasim Selçuk, Sundaram, Hari, et al.
Created Date
2011

Given the process of tumorigenesis, biological signaling pathways have become of interest in the field of oncology. Many of the regulatory mechanisms that are altered in cancer are directly related to signal transduction and cellular communication. Thus, identifying signaling pathways that have become deregulated may provide useful information to better understanding altered regulatory mechanisms within cancer. Many methods that have been created to measure the distinct activity of signaling pathways have relied strictly upon transcription profiles. With advancements in comparative genomic hybridization techniques, copy number data has become extremely useful in providing valuable information pertaining to the genomic landscape of …

Contributors
Trevino, Robert, Kim, Seungchan, Ringner, Markus, et al.
Created Date
2011

Reverse engineering gene regulatory networks (GRNs) is an important problem in the domain of Systems Biology. Learning GRNs is challenging due to the inherent complexity of the real regulatory networks and the heterogeneity of samples in available biomedical data. Real world biological data are commonly collected from broad surveys (profiling studies) and aggregate highly heterogeneous biological samples. Popular methods to learn GRNs simplistically assume a single universal regulatory network corresponding to available data. They neglect regulatory network adaptation due to change in underlying conditions and cellular phenotype or both. This dissertation presents a novel computational framework to learn common regulatory …

Contributors
Sen, Ina, Kim, Seungchan, Baral, Chitta, et al.
Created Date
2011

Typically, the complete loss or severe impairment of a sense such as vision and/or hearing is compensated through sensory substitution, i.e., the use of an alternative sense for receiving the same information. For individuals who are blind or visually impaired, the alternative senses have predominantly been hearing and touch. For movies, visual content has been made accessible to visually impaired viewers through audio descriptions -- an additional narration that describes scenes, the characters involved and other pertinent details. However, as audio descriptions should not overlap with dialogue, sound effects and musical scores, there is limited time to convey information, often …

Contributors
Viswanathan, Lakshmie Narayan, Panchanathan, Sethuraman, Hedgpeth, Terri, et al.
Created Date
2011

Finding the optimal solution to a problem with an enormous search space can be challenging. Unless a combinatorial construction technique is found that also guarantees the optimality of the resulting solution, this could be an infeasible task. If such a technique is unavailable, different heuristic methods are generally used to improve the upper bound on the size of the optimal solution. This dissertation presents an alternative method which can be used to improve a solution to a problem rather than construct a solution from scratch. Necessity analysis, which is the key to this approach, is the process of analyzing the …

Contributors
Nayeri, Peyman, Colbourn, Charles, Konjevod, Goran, et al.
Created Date
2011

Multi-task learning (MTL) aims to improve the generalization performance (of the resulting classifiers) by learning multiple related tasks simultaneously. Specifically, MTL exploits the intrinsic task relatedness, based on which the informative domain knowledge from each task can be shared across multiple tasks and thus facilitate the individual task learning. It is particularly desirable to share the domain knowledge (among the tasks) when there are a number of related tasks but only limited training data is available for each task. Modeling the relationship of multiple tasks is critical to the generalization performance of the MTL algorithms. In this dissertation, I propose …

Contributors
Chen, Jianhui, Ye, Jieping, Kumar, Sudhir, et al.
Created Date
2011

Action language C+ is a formalism for describing properties of actions, which is based on nonmonotonic causal logic. The definite fragment of C+ is implemented in the Causal Calculator (CCalc), which is based on the reduction of nonmonotonic causal logic to propositional logic. This thesis describes the language of CCalc in terms of answer set programming (ASP), based on the translation of nonmonotonic causal logic to formulas under the stable model semantics. I designed a standard library which describes the constructs of the input language of CCalc in terms of ASP, allowing a simple modular method to represent CCalc input …

Contributors
Casolary, Michael, Lee, Joohyung, Ahn, Gail-Joon, et al.
Created Date
2011

Detecting anatomical structures, such as the carina, the pulmonary trunk and the aortic arch, is an important step in designing a CAD system of detection Pulmonary Embolism. The presented CAD system gets rid of the high-level prior defined knowledge to become a system which can easily extend to detect other anatomic structures. The system is based on a machine learning algorithm --- AdaBoost and a general feature --- Haar. This study emphasizes on off-line and on-line AdaBoost learning. And in on-line AdaBoost, the thesis further deals with extremely imbalanced condition. The thesis first reviews several knowledge-based detection methods, which are …

Contributors
Wu, Hong, Liang, Jianming, Farin, Gerald, et al.
Created Date
2011