Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Subject
Date Range
2010 2019


Interpreting the petrogenesis of materials exposed on the surface of planets and asteroids is fundamental to understanding the origins and evolution of the inner Solar System. Temperature, pressure, fO2, and bulk composition directly influence the petrogenetic history of planetary surfaces and constraining these variables with remote sensing techniques is challenging. The integration of remote sensing data with analytical investigations of natural samples, lab-based spectroscopy, and thermodynamic modelling improves our ability to interpret the petrogenesis of planetary materials. A suite of naturally heated carbonaceous chondrite material was studied with lab-based spectroscopic techniques, including visible near-infrared and Fourier transform infrared reflectance spectroscopy. …

Contributors
Haberle, Christopher William, Christensen, Philip R., Garvie, Laurence A. J., et al.
Created Date
2018

Meter-resolution topography gathered by LiDAR (Light Detection and Ranging) has become an indispensable tool for better understanding of many surface processes including those sculpting landscapes that record information about earthquake hazards for example. For this reason, and because of the spectacular representation of the phenomena that these data provide, it is appropriate to integrate these data into Earth science educational materials. I seek to answer the following research question: "will using the LiDAR topography data instead of, or alongside, traditional visualizations and teaching methods enhance a student's ability to understand geologic concepts such as plate tectonics, the earthquake cycle, strike-slip …

Contributors
Robinson, Sarah E., Arrowsmith, Ramon, Reynolds, Stephen J, et al.
Created Date
2011

The taxonomic and metabolic profile of the microbial community inhabiting a natural system is largely determined by the physical and geochemical properties of the system. However, the influences of parameters beyond temperature, pH and salinity have been poorly analyzed with few studies incorporating the comprehensive suite of physical and geochemical measurements required to fully investigate the complex interactions known to exist between biology and the environment. Further, the techniques used to classify the taxonomic and functional composition of a microbial community are fragmented and unwieldy, resulting in unnecessarily complex and often non-consilient results. This dissertation integrates environmental metagenomes with extensive …

Contributors
Alsop, Eric Bennie, Raymond, Jason, Anbar, Ariel, et al.
Created Date
2014

Olympus Mons is the largest volcano on Mars. Previous studies have focused on large scale features on Olympus Mons, such as the basal escarpment, summit caldera complex and aureole deposits. My objective was to identify and characterize previously unrecognized and unmapped small scale features to understand the volcanotectonic evolution of this enormous volcano. For this study I investigated flank vents and arcuate graben. Flank vents are a common feature on composite volcanoes on Earth. They provide information on the volatile content of magmas, the propagation of magma in the subsurface and the tectonic stresses acting on the volcano. Graben are …

Contributors
Peters, Sean I., Christensen, Philip R, Clarke, Amanda B, et al.
Created Date
2015

Previous workers hypothesized that lunar Localized Pyroclastic Deposits (LPDs) represent products of vulcanian-style eruptions, since some have low proportions of juvenile material. The objective of the first study is to determine how juvenile composition, calculated using deposit and vent volumes, varies among LPDs. I used Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (LROC NAC) digital terrain models (DTMs) to generate models of pre-eruption surfaces for 23 LPDs and subtracted them from the NAC DTMs to calculate deposit and vent volumes. Results show that LPDs have a wide range of juvenile compositions and thinning profiles, and that there is a positive …

Contributors
Keske, Amber, Christensen, Philip R, Robinson, Mark S, et al.
Created Date
2018

Water is a critical resource for future human missions, and is necessary for understanding the evolution of the Solar System. The Moon and Mars have water in various forms and are therefore high-priority targets in the search for accessible extraterrestrial water. Complementary remote sensing analyses coupled with laboratory and field studies are necessary to provide a scientific context for future lunar and Mars exploration. In this thesis, I use multiple techniques to investigate the presence of water-ice at the lunar poles and the properties of martian chloride minerals, whose evolution is intricately linked with liquid water. Permanently shadowed regions (PSRs) …

Contributors
Mitchell, Julie Leeanne, Christensen, Philip R, Bell III, James F, et al.
Created Date
2017

The Himalayan orogenic system is one of the youngest and most spectacular examples of a continent-continent collision on earth. Although the collision zone has been the subject of extensive research, fundamental questions remain concerning the architecture and evolution of the orogen. Of particular interest are the structures surrounding the 5 km high Tibetan Plateau, as these features record both the collisional and post-collisional evolution of the orogen. In this study we examine structures along the southwestern margin of the Tibetan Plateau, including the Karakoram (KFS) and Longmu Co (LCF) faults, and the Ladakh, Pangong and Karakoram Ranges. New low-temperature thermochronology …

Contributors
Bohon, Wendy, Arrowsmith, Ramon, Hodges, Kip V, et al.
Created Date
2014

An array of north-striking, left-stepping, active normal faults is situated along the southwestern margin of the Gulf of California. This normal fault system is the marginal fault system of the oblique-divergent plate boundary within the Gulf of California. To better understand the role of upper-crustal processes during development of an obliquely rifted plate margin, gravity surveys were conducted across the normal-fault-bounded basins within the gulf-margin array and, along with optically stimulated luminescence dating of offset surfaces, fault-slip rates were estimated and fault patterns across basins were assessed, providing insight into sedimentary basin evolution. Additionally, detailed geologic and geomorphic maps were …

Contributors
Busch, Melanie Marie, Arrowsmith, Ramon, Reynolds, Stephen, et al.
Created Date
2011

Remote sensing in visible to near-infrared wavelengths is an important tool for identifying and understanding compositional differences on planetary surfaces. Electronic transitions produce broad absorption bands that are often due to the presence of iron cations in crystalline mineral structures or amorphous phases. Mars’ iron-rich and variably oxidized surface provides an ideal environment for detecting spectral variations that can be related to differences in surface dust cover or the composition of the underlying bedrock. Several imaging cameras sent to Mars include the capability to selectively filter incoming light to discriminate between surface materials. At the coarse spatial resolution provided by …

Contributors
Wellington, Danika, Bell III, James F, Christensen, Philip R, et al.
Created Date
2018

The dynamic Earth involves feedbacks between the solid crust and both natural and anthropogenic fluid flows. Fluid-rock interactions drive many Earth phenomena, including volcanic unrest, seismic activities, and hydrological responses. Mitigating the hazards associated with these activities requires fundamental understanding of the underlying physical processes. Therefore, geophysical monitoring in combination with modeling provides valuable tools, suitable for hazard mitigation and risk management efforts. Magmatic activities and induced seismicity linked to fluid injection are two natural and anthropogenic processes discussed in this dissertation. Successful forecasting of the timing, style, and intensity of a volcanic eruption is made possible by improved understanding …

Contributors
Zhai, Guang, Shirzaei, Manoochehr, Garnero, Edward, et al.
Created Date
2018

Shallow earthquakes in the upper part of the overriding plate of subduction zones can be devastating due to their proximity to population centers despite the smaller rupture extents than commonly occur on subduction megathrusts that produce the largest earthquakes. Damaging effects can be greater in volcanic arcs like Java because ground shaking is amplified by surficial deposits of uncompacted volcaniclastic sediments. Identifying the upper-plate structures and their potential hazards is key for minimizing the dangers they pose. In particular, the knowledge of the regional stress field and deformation pattern in this region will help us to better understand how subduction …

Contributors
Marliyani, Gayatri Indah, Arrowsmith, J Ramon, Clarke, Amanda B, et al.
Created Date
2016

The tectonic significance of the physiographic transition from the low-relief Tibetan plateau to the high peaks, rugged topography and deep gorges of the Himalaya is the source of much controversy. Some workers have suggested the transition may be structurally controlled (e.g. Hodges et al., 2001), and indeed, the sharp change in geomorphic character across the transition strongly suggests differential uplift between the Himalayan realm and the southernmost Tibetan Plateau. Most Himalayan researchers credit the South Tibetan fault system (STFS), a family of predominantly east-west trending, low-angle normal faults with a known trace of over 2,000 km along the Himalayan crest …

Contributors
Mcdermott, Jeni Amber, Hodges, Kip V, Whipple, Kelin X, et al.
Created Date
2012

Sedimentary basins are defined by extensional tectonics. Rugged mountain ranges stand in stark relief adjacent to muted structural basins filled with sediment. In simplest terms, this topography is the result of ranges uplifted along normal faults, and this uplift drives erosion within upland drainages, shedding sediment into subsiding basins. In southeastern Arizona's Basin and Range province extensional tectonics waned at approximately 3-5 Myr, and the region's structural basins began transitioning from internal to external drainage, forming the modern Gila River fluvial network. In the Atacama Desert of northern Chile, some basins of the Central Depression remain internally drained while others …

Contributors
Jungers, Matthew Cross, Heimsath, Arjun M, Whipple, Kelin, et al.
Created Date
2014

Quantifying the temporal and spatial evolution of active continental rifts contributes to our understanding of fault system evolution and seismic hazards. Rift systems also preserve robust paleoenvironmental records and are often characterized by strong climatic gradients that can be used to examine feedbacks between climate and tectonics. In this thesis, I quantify the spatial and temporal history of rift flank uplift by analyzing bedrock river channel profiles along footwall escarpments in the Malawi segment of the East Africa Rift. This work addresses questions that are widely applicable to continental rift settings: (1) Is rift-flank uplift sufficiently described by theoretical elliptical …

Contributors
Robinson, Scott Michael, Heimsath, Arjun M, Whipple, Kelin X, et al.
Created Date
2014

On Mars, sedimentary deposits reveal a complex history of water- and wind-related geologic processes. Central mounds – kilometer-scale stacks of sediment located within craters – occur across Mars, but the specific processes responsible for mound formation and subsequent modification are still uncertain. A survey of central mounds within large craters was conducted. Mound locations, mound offsets within their host craters, and relative mound heights were used to address various mound formation hypotheses. The results suggest that mound sediments once filled their host craters and were later eroded into the features observed today. Mounds offsets from the center of their host …

Contributors
Bennett, Kristen Alicia, Bell, James F, Christensen, Phillip, et al.
Created Date
2016

Scientific and Cultural Interpretations of Volcanoes, 1766-1901 analyzes nineteenth-century conceptions of volcanoes through interdisciplinary literature and science studies. The project considers how people in the nineteenth century used science, aesthetics, and other ways of knowing to understand volcanoes and their operations. In the mid-eighteenth century, volcanoes were seen as singular, unique features of the planet that lacked temporal and terrestrial reach. By the end of the nineteenth century, volcanoes were seen as networked, environmental phenomena that stretched through geological time and geographic space. Scientific and Cultural Interpretations of Volcanoes, 1766-1901 offers a new historical understanding of volcanoes and their environmental …

Contributors
Linthicum, Kent, Lussier, Mark, Bivona, Daniel, et al.
Created Date
2016

The goal of this study is to gain a better understanding of earthquake distribution and regional tectonic structure across Arizona. To achieve this objective, I utilized seismic data from EarthScope's USArray Transportable Array (TA), which was deployed in Arizona from April 2006 to March 2009. With station spacing of approximately 70 km and ~3 years of continuous three-component broadband seismic data, the TA provided an unprecedented opportunity to develop the first seismicity catalog for Arizona without spatial sampling bias. In this study I developed a new data analysis workflow to detect smaller scale seismicity across a regional study area, which …

Contributors
Lockridge, Jeffrey, Fouch, Matthew J, Arrowsmith, Ramon, et al.
Created Date
2011

The historic Cacachilas mining district is located in Baja California Sur, approximately 20 kilometers east of La Paz, and has a series of gold- and silver-hosted veins, faults, and shear zones within Cretaceous granodioritic plutons. The remote geographic location and past political events within Mexico left the district essentially unexplored after the late 1800s, when the Mexican Revolution began. More recent discovery of gold deposits along the Baja peninsula instigated a renewed interest in mineralization in the Sierra Cacachilas. The area lacks detailed previous geologic data, so this study focused on characterizing the controls of mineralization and the locations of …

Contributors
Severson, Allison, Reynolds, Stephen J, Semken, Steven, et al.
Created Date
2015

The Kinsley Mountain gold deposit of northeastern Nevada, located ~70 km south of Wendover, Nevada, contains seven sediment-hosted, disseminated-gold deposits, in Cambrian limestones and shales. Mining ceased in 1999, with 138,000 ounces of gold mined at an average grade between 1.5-2.0 g/t. Resource estimates vary between 15,000 and 150,000 ounces of gold remaining in several mineralized pods. Although exploration programs have been completed within the study area, the structural history and timing of precious-metal mineralization are still poorly understood. This study aims to better understand the relation between stratigraphy, structural setting, and style of gold mineralization. In order to accomplish …

Contributors
Macfarlane, Bryan John, Reynolds, Stephen, Hervig, Richard, et al.
Created Date
2012

ABSTRACT The accretion of juvenile island-arc lithosphere by convergent tectonism during the Paleoproterozoic, in conjunction with felsic volcanism, resulted in the assembly, ductile to partial brittle deformation, uplift, and northwest-directed thrusting of rocks in the McDowell Mountains region and adjacent areas in the Mazatzal Orogenic belt. Utilizing lithologic characteristics and petrographic analysis of the Proterozoic bedrock, a correlation to the Alder series was established, revising the stratigraphic sequences described by earlier works. The central fold belt, composed of an open, asymmetric syncline and an overturned, isoclinal anticline, is cut by an axial-plane parallel reactivated thrust zone that is intruded by …

Contributors
Vance, Brad L., Reynolds, Stephen J., Semken, Steven, et al.
Created Date
2012