Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Subject
Date Range
2010 2019


East African extensional basins have played a crucial role in revealing the evolution and characteristics of the early stages of continental rifting and for providing the geological context of hominin evolution and innovation. The numerous volcanic eruptions, rapid sedimentation and burial, and subsequent exposure through faulting and erosion, provide excellent conditions for the preservation of tectonic history, paleoenvironment data, and vertebrate fossils. The reconstruction of depositional environments and provision of geochronologic frameworks for hominin sites have been largely provided by geologic investigations in conjunction with paleontological studies, like the Ledi-Geraru Research Project (LGRP). High-resolution paleoclimate records that can be directly …

Contributors
Garello, Dominique Ines, Arrowsmith, Ramon, Campisano, Chris J, et al.
Created Date
2019

A mineral’s helium content reflects a balance between two competing processes: accumulation by radioactive decay and temperature-dependent diffusive loss. (U-Th)/He dating of zircon and other uranium and thorium-bearing minerals provides insight into the temperature histories of rocks at or near Earth’s surface that informs geoscientists’ understanding of tectonic and climate-driven exhumation, magmatic activity, and other thermal events. The crystal structure and chemistry of minerals affect helium diffusion kinetics, recorded closure temperatures, and interpretations of (U-Th)/He datasets. I used empirical and experimental methods to investigate helium systematics in two minerals chronometers: zircon and xenotime. The same radioactivity that makes zircon a …

Contributors
Anderson, Alyssa Jordan, Hodges, Kip, van Soest, Matthijs, et al.
Created Date
2019

Water has shaped the surface of Mars, recording previous environments and inspiring the search for extinct life beyond Earth. While conditions on the Martian surface today are not conducive to the presence of liquid water, ancient erosional and depositional features indicate that this was not always so. Quantifying the regional and global history of water on Mars is crucial to understanding how the planet evolved, where to focus future exploration, and implications for water on Earth. Many sites on Mars contain layered sedimentary deposits, sinuous valleys with delta shaped deposits, and other indications of large lakes. The Hypanis deposit is …

Contributors
Adler, Jacob, Bell, James, Christensen, Philip, et al.
Created Date
2019

The transport of hydrogen to the Earth’s deep interior remains uncertain. The upper mantle minerals have very low hydrogen solubilities (hundreds of ppm). The hydrogen storage capability in the transition zone minerals (2 wt%) is high compared to those of the upper mantle. The hydrogen storage in the lower mantle is not well known. The main minerals in the lower mantle bridgmanite and ferropericlase have very low hydrogen storage capacities (less than 20 ppm). In order to further understand the hydrogen storage in the lower mantle, a series of experiments had been conducted to simulate the environment similar to the …

Contributors
Chen, Huawei, Shim, Sang-Heon, Garnero, Edward, et al.
Created Date
2019

In this thesis, I investigate possible formation processes in the northern Claritas Fossae and the large Thaumasia graben on Mars. In particular, I assess three proposed formation hypotheses for the region: a mega-landslide across the Thaumasia plateau, originating in Tharsis and moving to the south-west; a rift system pulling apart Claritas Fossae and opening the large Thaumasia graben generally propagating in a north-south direction: and extension caused by uplifting from underlying dike swarms. Using digital terrain models (DTMs) from the High Resolution Stereo Camera (HRSC) aboard Mars Express and visual images from the Context Camera (CTX) aboard the Mars Reconnaissance …

Contributors
Studer-Ellis, Genevieve Lynn, Williams, David A., Christensen, Philip R., et al.
Created Date
2019

Geochronology and thermochronology are valuable tools for investigating the synergy between the deformational and erosional processes that shape mountainous terrains. Though numerous techniques have been developed to probe the rate and timing of events within these settings, the research presented here explores how scientists can use fewer samples to produce richer data products with broader contextual importance. The beginning of this compilation focuses on establishing laboratory techniques to facilitate this goal. I developed a novel laser ablation ‘double dating’ (LADD) technique that rapidly yields paired U/Pb and (U-Th)/He dates for the accessory minerals zircon, titanite, and apatite. The technique obviates …

Contributors
Horne, Alexandra Michelle, Hodges, Kip V., van Soest, Matthijs C., et al.
Created Date
2019

Establishing the timing of impact crater formation is essential to exploring the relationship between bolide impact and biological evolution, and constraining the tempo of planetary surface evolution. Unfortunately, precise and accurate impact geochronology can be challenging. Many of the rock products of impact (impactites) contain relict, pre-impact phases that may have had their isotopic systematics completely reset during the impact event, only partially reset, or not reset at all. Of the many isotopic chronometers that have been used to date impactites, the U/Pb zircon chronometer (ZrnPb) seems least susceptible to post-impact disturbances, and ZrnPb dates are typically much more precise …

Contributors
Brunner, Anna Elizabeth, Hodges, Kip V, Barboni, Melanie, et al.
Created Date
2019

There are more than 20 active missions exploring planets and small bodies beyond Earth in our solar system today. Many more have completed their journeys or will soon begin. Each spacecraft has a suite of instruments and sensors that provide a treasure trove of data that scientists use to advance our understanding of the past, present, and future of the solar system and universe. As more missions come online and the volume of data increases, it becomes more difficult for scientists to analyze these complex data at the desired pace. There is a need for systems that can rapidly and …

Contributors
Kerner, Hannah Rae, Bell, James F, Ben Amor, Heni, et al.
Created Date
2019

Primitive arc magmas provide a critical glimpse into the geochemical evolution of subduction zone magmas, as they represent the most unadulterated mantle-derived magmas observed in nature in these tectonic environments and are the precursors of the more abundant andesites and dacites typical in arcs. To date, the study of primitive arc magmas has largely focused on their origins at depth, while significantly less is known about pre-eruptive crustal storage and ascent history. This study examines the crustal storage and ascent history of the Mt. Shasta primitive magnesian andesite (PMA), the demonstrated dominant parent magma for the abundant mixed andesites erupted …

Contributors
Phillips, Mitchell, Till, Christy B, Hervig, Richard, et al.
Created Date
2019

Impact cratering and volcanism are two fundamental processes that alter the surfaces of the terrestrial planets. Though well studied through laboratory experiments and terrestrial analogs, many questions remain regarding how these processes operate across the Solar System. Little is known about the formation of large impact basins (>300 km in diameter) and the degree to which they modify planetary surfaces. On the Moon, large impact basins dominate the terrain and are relatively well preserved. Because the lunar geologic timescale is largely derived from basin stratigraphic relations, it is crucial that we are able to identify and characterize materials emplaced as …

Contributors
Meyer, Heather, Robinson, Mark S, Bell, Jim, et al.
Created Date
2018

Interpreting the petrogenesis of materials exposed on the surface of planets and asteroids is fundamental to understanding the origins and evolution of the inner Solar System. Temperature, pressure, fO2, and bulk composition directly influence the petrogenetic history of planetary surfaces and constraining these variables with remote sensing techniques is challenging. The integration of remote sensing data with analytical investigations of natural samples, lab-based spectroscopy, and thermodynamic modelling improves our ability to interpret the petrogenesis of planetary materials. A suite of naturally heated carbonaceous chondrite material was studied with lab-based spectroscopic techniques, including visible near-infrared and Fourier transform infrared reflectance spectroscopy. …

Contributors
Haberle, Christopher William, Christensen, Philip R., Garvie, Laurence A. J., et al.
Created Date
2018

Explosive mafic (basaltic) volcanism is not easily explained by current eruption models, which predict low energy eruptions from low viscosity magma due to decoupling of volatiles (gases). Sunset Crater volcano provides an example of an alkali basalt magma that produced a highly explosive sub-Plinian eruption. I investigate the possible role of magmatic volatiles in the Sunset Crater eruption through study of natural samples of trapped volatiles (melt inclusions) and experiments on mixed-volatile (H2O-CO2) solubility in alkali-rich mafic magmas. I conducted volatile-saturated experiments in six mafic magma compositions at pressures between 400 MPa and 600 MPa to investigate the influence of …

Contributors
Allison, Chelsea M, Clarke, Amanda B, Hervig, Richard L, et al.
Created Date
2018

Remote sensing in visible to near-infrared wavelengths is an important tool for identifying and understanding compositional differences on planetary surfaces. Electronic transitions produce broad absorption bands that are often due to the presence of iron cations in crystalline mineral structures or amorphous phases. Mars’ iron-rich and variably oxidized surface provides an ideal environment for detecting spectral variations that can be related to differences in surface dust cover or the composition of the underlying bedrock. Several imaging cameras sent to Mars include the capability to selectively filter incoming light to discriminate between surface materials. At the coarse spatial resolution provided by …

Contributors
Wellington, Danika, Bell III, James F, Christensen, Philip R, et al.
Created Date
2018

There is a growing body of evidence that the evolving redox structure of the oceans has been an important influence on the evolutionary trajectory of animals. However, current understanding of connections between marine redox conditions and marine extinctions and recoveries is hampered by limited detailed knowledge of the timing, duration, and extent of marine redox changes. The recent development of U isotopes (δ238U) in carbonates as a global ocean redox proxy has provided new insight into this problem. Reliable application and interpretation of the δ238U paleoproxy in geological records requires a thorough understanding of the reliability of δ238U recorded by …

Contributors
Zhang, Feifei, Anbar, Ariel, Gordon, Gwyneth, et al.
Created Date
2018

An exhaustive parameter study involving 133 dynamic crystallization experiments was conducted, to investigate the validity of the planetary embryo bow shock model by testing whether the cooling rates predicted by this model are consistent with the most dominant chondrule texture, porphyritic. Results show that using coarse-grained precursors and heating durations ≤ 5 minutes at peak temperature, porphyritic textures can be reproduced at cooling rates ≤ 600 K/hr, rates consistent with planetary embryo bow shocks. Porphyritic textures were found to be commonly associated with skeletal growth, which compares favorably to features in natural chondrules from Queen Alexandra Range 97008 analyzed, which …

Contributors
Perez, Alexandra Marie, Desch, Steven J, Till, Christy B, et al.
Created Date
2018

The study of fault zones is a critical component to understanding earthquake mechanics and seismic hazard evaluations. Models or simulations of potential earthquakes, based on fault zone properties, are a first step in mitigating the hazard. Theoretical models of earthquake ruptures along a bi-material interface result in asymmetrical damage and preferred rupture propagation direction. Results include greater damage intensity within stiffer material and preferred slip in the direction of the more compliant side of the fault. Data from a dense seismic array along the Clark strand of the SJFZ at Sage Brush Flat (SGB) near Anza, CA, allows for analysis …

Contributors
Wade, Adam Micahel, Arrowsmith, Ramon, Reynolds, Stephen, et al.
Created Date
2018

The dynamic Earth involves feedbacks between the solid crust and both natural and anthropogenic fluid flows. Fluid-rock interactions drive many Earth phenomena, including volcanic unrest, seismic activities, and hydrological responses. Mitigating the hazards associated with these activities requires fundamental understanding of the underlying physical processes. Therefore, geophysical monitoring in combination with modeling provides valuable tools, suitable for hazard mitigation and risk management efforts. Magmatic activities and induced seismicity linked to fluid injection are two natural and anthropogenic processes discussed in this dissertation. Successful forecasting of the timing, style, and intensity of a volcanic eruption is made possible by improved understanding …

Contributors
Zhai, Guang, Shirzaei, Manoochehr, Garnero, Edward, et al.
Created Date
2018

Education through field exploration is fundamental in geoscience. But not all students enjoy equal access to field-based learning because of time, cost, distance, ability, and safety constraints. At the same time, technological advances afford ever more immersive, rich, and student-centered virtual field experiences. Virtual field trips may be the only practical options for most students to explore pedagogically rich but inaccessible places. A mixed-methods research project was conducted on an introductory and an advanced geology class to explore the implications of learning outcomes of in-person and virtual field-based instruction at Grand Canyon National Park. The study incorporated the Great Unconformity …

Contributors
Ruberto, Thomas, Semken, Steve, Anbar, Ariel, et al.
Created Date
2018

The movement between tectonic plates is accommodated through brittle (elastic) displacement on the plate boundary faults and ductile permanent deformation on the fault borderland. The elastic displacement along the fault can occur in the form of either large seismic events or aseismic slip, known as fault creep. Fault creep mainly occurs at the deep ductile portion of the crust, where the temperature is high. Nonetheless, aseismic creep can also occur on the shallow brittle portion of the fault segments that are characterized by frictionally weak material, elevated pore fluid pressure, or geometrical complexity. Creeping segments are assumed to safely release …

Contributors
Khoshmanesh, Mostafa, Shirzaei, Manoochehr, Arrowsmith, Ramon, et al.
Created Date
2018

Previous workers hypothesized that lunar Localized Pyroclastic Deposits (LPDs) represent products of vulcanian-style eruptions, since some have low proportions of juvenile material. The objective of the first study is to determine how juvenile composition, calculated using deposit and vent volumes, varies among LPDs. I used Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (LROC NAC) digital terrain models (DTMs) to generate models of pre-eruption surfaces for 23 LPDs and subtracted them from the NAC DTMs to calculate deposit and vent volumes. Results show that LPDs have a wide range of juvenile compositions and thinning profiles, and that there is a positive …

Contributors
Keske, Amber, Christensen, Philip R, Robinson, Mark S, et al.
Created Date
2018