Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Many methods of passive flow control rely on changes to surface morphology. Roughening surfaces to induce boundary layer transition to turbulence and in turn delay separation is a powerful approach to lowering drag on bluff bodies. While the influence in broad terms of how roughness and other means of passive flow control to delay separation on bluff bodies is known, basic mechanisms are not well understood. Of particular interest for the current work is understanding the role of surface dimpling on boundary layers. A computational approach is employed and the study has two main goals. The first is to understand …

Contributors
Gutierrez-Jensen, Jeremiah, Squires, Kyle, Hermann, Marcus, et al.
Created Date
2011

With the ever-increasing demand for high-end services, technological companies have been forced to operate on high performance servers. In addition to the customer services, the company's internal need to store and manage huge amounts of data has also increased their need to invest in High Density Data Centers. As a result, the performance to size of the data center has increased tremendously. Most of the consumed power by the servers is emitted as heat. In a High Density Data Center, the power per floor space area is higher compared to the regular data center. Hence the thermal management of this …

Contributors
Ramaraj, Dineshbalaji, Gupta, Sandeep, Hermann, Marcus, et al.
Created Date
2015