Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Date Range
2011 2019


This dissertation provides a fundamental understanding of the impact of bulk polymer properties on the nanometer length scale modulus. The elastic modulus of amorphous organic thin films is examined using a surface wrinkling technique. Potential correlations between thin film behavior and intrinsic properties such as flexibility and chain length are explored. Thermal properties, glass transition temperature (Tg) and the coefficient of thermal expansion, are examined along with the moduli of these thin films. It is found that the nanometer length scale behavior of flexible polymers correlates to its bulk Tg and not the polymers intrinsic size. It is also found …

Contributors
Torres, Jessica M., Vogt, Bryan D, Stafford, Christopher M, et al.
Created Date
2011

The disordered nature of glass-forming melts results in two features for its dynamics i.e. non-Arrhenius and non-exponential behavior. Their macroscopic properties are studied through observing spatial heterogeneity of the molecular relaxation. Experiments performed in a low-frequency range tracks the flow of energy in time on slow degrees of freedom and transfer to the vibrational heat bath of the liquid, as is the case for microwave heating. High field measurements on supercooled liquids result in generation of fictive temperatures of the absorbing modes which eventually result in elevated true bath temperatures. The absorbed energy allows us to quantify the changes in …

Contributors
Pathak, Ullas, Richert, Ranko, Dai, Lenore, et al.
Created Date
2012

Polymeric materials containing nanometer (nm) size particles are being introduced to provide compact shapes for low and medium voltage insulation equipment. The nanocomposites may provide superior electrical performance when compared with those available currently, such as lower dielectric losses and increased dielectric strength, tracking and erosion resistance, and surface hydrophobicity. All of the above mentioned benefits can be achieved at a lower filler concentration (< 10%) than conventional microfillers (40-60%). Also, the uniform shapes of nanofillers provide a better electrical stress distribution as compared to irregular shaped microcomposites which can have high internal electric stress, which could be a problem …

Contributors
Iyer, Ganpathy, Gorur, Ravi S, Gorur, Ravi S, et al.
Created Date
2012

This thesis studies three different types of anhydrous proton conducting electrolytes for use in fuel cells. The proton energy level scheme is used to make the first electrolyte which is a rubbery polymer in which the conductivity reaches values typical of activated Nafion, even though it is completely anhydrous. The protons are introduced into a cross-linked polyphospazene rubber by the superacid HOTf, which is absorbed by partial protonation of the backbone nitrogens. The decoupling of conductivity from segmental relaxation times assessed by comparison with conductivity relaxation times amounts to some 10 orders of magnitude, but it cannot be concluded whether …

Contributors
Ansari, Younes, Angell, Charles A, Richert, Ranko, et al.
Created Date
2013

The objective of the present investigations is to experimentally determine the fundamental molecular properties of the transient metal containing pieces. The transient molecules have been generated using laser ablation production technique and detected by using laser induced fluorescence technique. Ultra-high resolution spectra of the diatomic molecules, 87SrF, 135&137BaF, YbF, HfF, and IrSi were recorded at a resolution of approximately 30 Mhz. The fine and hyperfine structure of these molecules were determined for the ground and the excited state. The optical Stark splittings of 180HfF and IrSi were recorded and analyzed to determine the permanent electric dipole moments of the ground …

Contributors
Le, Anh T., Steimle, Timothy C, Richert, Ranko, et al.
Created Date
2013

We studied the relationship between the polarizability and the molecular conductance that arises in the response of a molecule to an external electric field. To illustrate the plausibility of the idea, we used Simmons' tunneling model, which describes image charge and dielectric effects on electron transport through a barrier. In such a model, the barrier height depends on the dielectric constant of the electrode-molecule-electrode junction, which in turn can be approximately expressed in terms of the molecular polarizability via the classical Clausius-Mossotti relation. In addition to using the tunneling model, the validity of the relationships between the molecular polarizability and …

Contributors
Vatan Meidanshahi, Reza, Mujica, Vladimiro, Chizmeshya, Andrew, et al.
Created Date
2014

Broadband dielectric spectroscopy is a powerful technique for understanding the dynamics in supercooled liquids. It generates information about the timescale of the orientational motions of molecular dipoles within the liquid. However, dynamics of liquids measured in the non-linear response regime has recently become an area of significant interest, because additional information can be obtained compared with linear response measurements. The first part of this thesis describes nonlinear dielectric relaxation experiments performed on various molecular glass forming-liquids, with an emphasis on the response at high frequencies (excess wing). A significant nonlinear dielectric effect (NDE) was found to persist in these modes, …

Contributors
Samanta, Subarna, Richert, Ranko, Steimle, Timothy, et al.
Created Date
2016

Plastic crystals as a class are of much interest in applications as solid state electrolytes for electrochemical energy conversion devices. A subclass exhibit very high protonic conductivity and its members have been investigated as possible fuel cell electrolytes, as first demonstrated by Haile’s group in 2001 with CsHSO4. To date these have been inorganic compounds with tetrahedral oxyanions carrying one or more protons, charge-balanced by large alkali cations. Above the rotator phase transition, the HXO4- anions re-orient at a rate dependent on temperature while the centers of mass remain ordered. The transition is accompanied by a conductivity "jump" (as much …

Contributors
Klein, Iolanda Santana, Angell, Charles A, Buttry, Daniel A, et al.
Created Date
2016

How water behaves at interfaces is relevant to many scientific and technological applications; however, many subtle phenomena are unknown in aqueous solutions. In this work, interfacial structural transition in hydration shells of a polarizable solute at critical polarizabilities is discovered. The transition is manifested in maximum water response, the reorientation of the water dipoles at the interface, and an increase in the density of dangling OH bonds. This work also addresses the role of polarizability of the active site of proteins in biological catalytic reactions. For proteins, the hydration shell becomes very heterogeneous and involves a relatively large number of …

Contributors
Dinpajooh, Mohammadhasan, Matyushov, Dmitry V, Richert, Ranko, et al.
Created Date
2016

The bonding and electrostatic properties of gold containing molecules are highly influenced by relativistic effects. To understand this facet on bonding, a series of simple diatomic AuX (X=F, Cl, O and S) molecules, where upon bond formation the Au atom donates or accepts electrons, was investigated and discussed in this thesis. First, the optical field-free, Stark, and Zeeman spectroscopic studies have been performed on AuF and AuCl. The simple polar bonds between Au and typical halogens (i.e. F and Cl) can be well characterized by the electronic structure studies and the permanent electric dipole moments, el. The spectroscopic parameters have …

Contributors
Zhang, Ruohan, Steimle, Timothy C., Williams, Peter, et al.
Created Date
2017

Engineered nanoparticles (NPs) pose risk potentials, if they exist in water systems at significant concentrations and if they remain reactive to cause toxicity. Three goals guided this study: (1) establishing NP detecting methods with high sensitivity to tackle low concentration and small sizes, (2) achieving assays capable of measuring NP surface reactivity and identifying surface reaction mechanisms, and (3) understanding the impact of surface adsorption of ions on surface reactivity of NPs in water. The size detection limit of single particle inductively coupled plasma spectrometry (spICP-MS) was determined for 40 elements, demonstrating the feasibility of spICP-MS to different NP species …

Contributors
Bi, Xiangyu, Westerhoff, Paul K, Rittmann, Bruce E, et al.
Created Date
2018

A driving force for studies of water, alcohols, and amides is the determination of the role of hydrogen bonding. Hydrogen bonds can break and reform, consequently creating supramolecular structures. Understanding the role supramolecular structures play in the dynamics of monohydroxyl alcohols is important to understanding hydrogen bonding in more complex systems such as proteins. Since many monohydroxyl alcohols are good glass formers, dielectric spectroscopy in the supercooled regime is used to gather information about the dynamics of these liquids. Application of high external fields will reversibly alter the polarization responses of the material from the linear response. This results in …

Contributors
Young-Gonzales, Amanda, Richert, Ranko, Angell, Charles, et al.
Created Date
2019

Transient molecules are of great importance having proposed applications in quantum science and technology and tests of fundamental physics. In the present dissertation, the transient molecules studied are SrOH, ThF, ThCl, YbF and YbOH; each having been selected because of their proposed application. Specifically, SrOH is a candidate of constructing a molecular magneto-optical trap (MOT). The simple actinide molecules, ThF and ThCl, were selected as ligand bonding model systems to gain insight into chemical processing of Spent Nuclear Fuel. The lanthanides YbF and YbOH are venues for the determination of electron electric dipole moment (eEDM) and the studies in this …

Contributors
Nguyen, Duc Trung, Steimle, Timothy C, Richert, Ranko, et al.
Created Date
2019

This study aims to address the deficiencies of the Marcus model of electron transfer (ET) and then provide modifications to the model. A confirmation of the inverted energy gap law, which is the cleanest verification so far, is presented for donor-acceptor complexes. In addition to the macroscopic properties of the solvent, the physical properties of the solvent are incorporated in the model via the microscopic solvation model. For the molecules studied in this dissertation, the rate constant first increases with cooling, in contrast to the prediction of the Arrhenius law, and then decreases at lower temperatures. Additionally, the polarizability of …

Contributors
Waskasi, Morteza, Matyushov, Dmitry, Richert, Ranko, et al.
Created Date
2019