Skip to main content

ASU Electronic Theses and Dissertations

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at

The Himalaya are the archetypal example of a continental collision belt, formed by the ongoing convergence between India and Eurasia. Boasting some of the highest and most rugged topography on Earth, there is currently no consensus on how climatic and tectonic processes have combined to shape its topographic evolution. The Kingdom of Bhutan in the eastern Himalaya provides a unique opportunity to study the interconnections among Himalayan climate, topography, erosion, and tectonics. The eastern Himalaya are remarkably different from the rest of the orogen, most strikingly due to the presence of the Shillong Plateau to the south of the Himalayan …

Adams, Byron Allen, Whipple, Kelin X, Hodges, Kip V, et al.
Created Date

The collision of India and Eurasia constructed the Himalayan Mountains. Questions remain regarding how subsequent exhumation by climatic and tectonic processes shaped the landscape throughout the Late Cenozoic to create the complex architecture observed today. The Mount Everest region underwent tectonic denudation by extension and bestrides one of the world’s most significant rain shadows. Also, glacial and fluvial processes eroded the Everest massif over shorter timescales. In this work, I review new bedrock and detrital thermochronological and geochronological data and both one- and two-dimensional thermal-mechanical modeling that provides insights on the age range and rates of tectonic and erosional processes …

Schultz, Mary Hannah, Hodges, Kip V, Whipple, Kelin X, et al.
Created Date