Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Resource Type
  • Doctoral Dissertation
Date Range
2012 2019


The rapid advancement of wireless technology has instigated the broad deployment of wireless networks. Different types of networks have been developed, including wireless sensor networks, mobile ad hoc networks, wireless local area networks, and cellular networks. These networks have different structures and applications, and require different control algorithms. The focus of this thesis is to design scheduling and power control algorithms in wireless networks, and analyze their performances. In this thesis, we first study the multicast capacity of wireless ad hoc networks. Gupta and Kumar studied the scaling law of the unicast capacity of wireless ad hoc networks. They derived …

Contributors
Zhou, Shan, Ying, Lei, Zhang, Yanchao, et al.
Created Date
2013

Networks naturally appear in many high-impact applications. The simplest model of networks is single-layered networks, where the nodes are from the same domain and the links are of the same type. However, as the world is highly coupled, nodes from different application domains tend to be interdependent on each other, forming a more complex network model called multi-layered networks. Among the various aspects of network studies, network connectivity plays an important role in a myriad of applications. The diversified application areas have spurred numerous connectivity measures, each designed for some specific tasks. Although effective in their own fields, none of …

Contributors
Chen, Chen, Tong, Hanghang, Davulcu, Hasan, et al.
Created Date
2019

In the past few decades, there has been a remarkable shift in the boundary between public and private information. The application of information technology and electronic communications allow service providers (businesses) to collect a large amount of data. However, this ``data collection" process can put the privacy of users at risk and also lead to user reluctance in accepting services or sharing data. This dissertation first investigates privacy sensitive consumer-retailers/service providers interactions under different scenarios, and then focuses on a unified framework for various information-theoretic privacy and privacy mechanisms that can be learned directly from data. Existing approaches such as …

Contributors
Huang, Chong, Sankar, Lalitha, Kosut, Oliver, et al.
Created Date
2018

A Fiber-Wireless (FiWi) network integrates a passive optical network (PON) with wireless mesh networks (WMNs) to provide high speed backhaul via the PON while offering the flexibility and mobility of a WMN. Generally, increasing the size of a WMN leads to higher wireless interference and longer packet delays. The partitioning of a large WMN into several smaller WMN clusters, whereby each cluster is served by an Optical Network Unit (ONU) of the PON, is examined. Existing WMN throughput-delay analysis techniques considering the mean load of the nodes at a given hop distance from a gateway (ONU) are unsuitable for the …

Contributors
Chen, Po-Yen, Reisslein, Martin, Seeling, Patrick, et al.
Created Date
2015

Diffusion processes in networks can be used to model many real-world processes, such as the propagation of a rumor on social networks and cascading failures on power networks. Analysis of diffusion processes in networks can help us answer important questions such as the role and the importance of each node in the network for spreading the diffusion and how to top or contain a cascading failure in the network. This dissertation consists of three parts. In the first part, we study the problem of locating multiple diffusion sources in networks under the Susceptible-Infected-Recovered (SIR) model. Given a complete snapshot of …

Contributors
Chen, Zhen, Ying, Lei, Tong, Hanghang, et al.
Created Date
2018

Data privacy is emerging as one of the most serious concerns of big data analytics, particularly with the growing use of personal data and the ever-improving capability of data analysis. This dissertation first investigates the relation between different privacy notions, and then puts the main focus on developing economic foundations for a market model of trading private data. The first part characterizes differential privacy, identifiability and mutual-information privacy by their privacy--distortion functions, which is the optimal achievable privacy level as a function of the maximum allowable distortion. The results show that these notions are fundamentally related and exhibit certain consistency: …

Contributors
Wang, Weina, Ying, Lei, Zhang, Junshan, et al.
Created Date
2016

The explosive growth of data generated from different services has opened a new vein of research commonly called ``big data.'' The sheer volume of the information in this data has yielded new applications in a wide range of fields, but the difficulties inherent in processing the enormous amount of data, as well as the rate at which it is generated, also give rise to significant challenges. In particular, processing, modeling, and understanding the structure of online social networks is computationally difficult due to these challenges. The goal of this study is twofold: first to present a new networked data processing …

Contributors
Proulx, Brian Benjamin, Zhang, Junshan, Cochran, Douglas, et al.
Created Date
2015

The purpose of information source detection problem (or called rumor source detection) is to identify the source of information diffusion in networks based on available observations like the states of the nodes and the timestamps at which nodes adopted the information (or called infected). The solution of the problem can be used to answer a wide range of important questions in epidemiology, computer network security, etc. This dissertation studies the fundamental theory and the design of efficient and robust algorithms for the information source detection problem. For tree networks, the maximum a posterior (MAP) estimator of the information source is …

Contributors
Zhu, Kai, Ying, Lei, Lai, Ying-Cheng, et al.
Created Date
2015

The cyber-physical systems (CPS) are emerging as the underpinning technology for major industries in the 21-th century. This dissertation is focused on two fundamental issues in cyber-physical systems: network interdependence and information dynamics. It consists of the following two main thrusts. The first thrust is targeted at understanding the impact of network interdependence. It is shown that a cyber-physical system built upon multiple interdependent networks are more vulnerable to attacks since node failures in one network may result in failures in the other network, causing a cascade of failures that would potentially lead to the collapse of the entire infrastructure. …

Contributors
Qian, Dajun, Zhang, Junshan, Ying, Lei, et al.
Created Date
2012

Our ability to understand networks is important to many applications, from the analysis and modeling of biological networks to analyzing social networks. Unveiling network dynamics allows us to make predictions and decisions. Moreover, network dynamics models have inspired new ideas for computational methods involving multi-agent cooperation, offering effective solutions for optimization tasks. This dissertation presents new theoretical results on network inference and multi-agent optimization, split into two parts - The first part deals with modeling and identification of network dynamics. I study two types of network dynamics arising from social and gene networks. Based on the network dynamics, the proposed …

Contributors
Wai, Hoi To, Scaglione, Anna, Berisha, Visar, et al.
Created Date
2017

In this dissertation, I propose potential techniques to improve the quality-of-service (QoS) of real-time applications in cognitive radio (CR) systems. Unlike best-effort applications, real-time applications, such as audio and video, have a QoS that need to be met. There are two different frameworks that are used to study the QoS in the literature, namely, the average-delay and the hard-deadline frameworks. In the former, the scheduling algorithm has to guarantee that the packet's average delay is below a prespecified threshold while the latter imposes a hard deadline on each packet in the system. In this dissertation, I present joint power allocation …

Contributors
Ewaisha, Ahmed, Tepedelenlioglu, Cihan, Ying, Lei, et al.
Created Date
2016

Resource allocation in communication networks aims to assign various resources such as power, bandwidth and load in a fair and economic fashion so that the networks can be better utilized and shared by the communicating entities. The design of efficient resource-allocation algorithms is, however, becoming more and more challenging due to the precipitously increasing scale of the networks. This thesis strives to understand how to design such low-complexity algorithms with performance guarantees. In the first part, the link scheduling problem in wireless ad hoc networks is considered. The scheduler is charge of finding a set of wireless data links to …

Contributors
Kang, Xiaohan, Ying, Lei, Cochran, Douglas, et al.
Created Date
2015

The research on the topology and dynamics of complex networks is one of the most focused area in complex system science. The goals are to structure our understanding of the real-world social, economical, technological, and biological systems in the aspect of networks consisting a large number of interacting units and to develop corresponding detection, prediction, and control strategies. In this highly interdisciplinary field, my research mainly concentrates on universal estimation schemes, physical controllability, as well as mechanisms behind extreme events and cascading failure for complex networked systems. Revealing the underlying structure and dynamics of complex networked systems from observed data …

Contributors
Chen, Yuzhong Chen, Lai, Ying-Cheng, Spanias, Andreas, et al.
Created Date
2016

Conductance fluctuations associated with quantum transport through quantumdot systems are currently understood to depend on the nature of the corresponding classical dynamics, i.e., integrable or chaotic. There are a couple of interesting phenomena about conductance fluctuation and quantum tunneling related to geometrical shapes of graphene systems. Firstly, in graphene quantum-dot systems, when a magnetic field is present, as the Fermi energy or the magnetic flux is varied, both regular oscillations and random fluctuations in the conductance can occur, with alternating transitions between the two. Secondly, a scheme based on geometrical rotation of rectangular devices to effectively modulate the conductance fluctuations …

Contributors
Ying, Lei, Lai, Ying-Cheng, Vasileska, Dragica, et al.
Created Date
2016

Microblogging services such as Twitter, Sina Weibo, and Tumblr have been emerging and deeply embedded into people's daily lives. Used by hundreds of millions of users to connect the people worldwide and share and access information in real-time, the microblogging service has also became the target of malicious attackers due to its massive user engagement and structural openness. Although existed, little is still known in the community about new types of vulnerabilities in current microblogging services which could be leveraged by the intelligence-evolving attackers, and more importantly, the corresponding defenses that could prevent both the users and the microblogging service …

Contributors
Zhang, Jinxue, Zhang, Yanchao, Zhang, Junshan, et al.
Created Date
2016

Dynamic spectrum access (DSA) has great potential to address worldwide spectrum shortage by enhancing spectrum efficiency. It allows unlicensed secondary users to access the under-utilized spectrum when the primary users are not transmitting. On the other hand, the open wireless medium subjects DSA systems to various security and privacy issues, which might hinder the practical deployment. This dissertation consists of two parts to discuss the potential challenges and solutions. The first part consists of three chapters, with a focus on secondary-user authentication. Chapter One gives an overview of the challenges and existing solutions in spectrum-misuse detection. Chapter Two presents SpecGuard, …

Contributors
Jin, Xiaocong, Zhang, Yanchao, Zhang, Junshan, et al.
Created Date
2017

Mobile devices are penetrating everyday life. According to a recent Cisco report [10], the number of mobile connected devices such as smartphones, tablets, laptops, eReaders, and Machine-to-Machine (M2M) modules will hit 11.6 billion by 2021, exceeding the world's projected population at that time (7.8 billion). The rapid development of mobile devices has brought a number of emerging security and privacy issues in mobile computing. This dissertation aims to address a number of challenging security and privacy issues in mobile computing. This dissertation makes fivefold contributions. The first and second parts study the security and privacy issues in Device-to-Device communications. Specifically, …

Contributors
Sun, Jingchao, Zhang, Yanchao, Zhang, Junshan, et al.
Created Date
2017

Mobile devices have penetrated into every aspect of modern world. For one thing, they are becoming ubiquitous in daily life. For the other thing, they are storing more and more data, including sensitive data. Therefore, security and privacy of mobile devices are indispensable. This dissertation consists of five parts: two authentication schemes, two attacks, and one countermeasure related to security and privacy of mobile devices. Specifically, in Chapter 1, I give an overview the challenges and existing solutions in these areas. In Chapter 2, a novel authentication scheme is presented, which is based on a user’s tapping or sliding on …

Contributors
Chen, Yimin, Zhang, Yanchao, Zhang, Junshan, et al.
Created Date
2018

A principal goal of this dissertation is to study stochastic optimization and real-time scheduling in cyber-physical systems (CPSs) ranging from real-time wireless systems to energy systems to distributed control systems. Under this common theme, this dissertation can be broadly organized into three parts based on the system environments. The first part investigates stochastic optimization in real-time wireless systems, with the focus on the deadline-aware scheduling for real-time traffic. The optimal solution to such scheduling problems requires to explicitly taking into account the coupling in the deadline-aware transmissions and stochastic characteristics of the traffic, which involves a dynamic program that is …

Contributors
Yang, Lei, Zhang, Junshan, Tepedelenlioglu, Cihan, et al.
Created Date
2012

This thesis investigates three different resource allocation problems, aiming to achieve two common goals: i) adaptivity to a fast-changing environment, ii) distribution of the computation tasks to achieve a favorable solution. The motivation for this work relies on the modern-era proliferation of sensors and devices, in the Data Acquisition Systems (DAS) layer of the Internet of Things (IoT) architecture. To avoid congestion and enable low-latency services, limits have to be imposed on the amount of decisions that can be centralized (i.e. solved in the ``cloud") and/or amount of control information that devices can exchange. This has been the motivation to …

Contributors
Ferrari, Lorenzo, Scaglione, Anna, Bliss, Daniel, et al.
Created Date
2017

A principal goal of this dissertation is to study wireless network design and optimization with the focus on two perspectives: 1) socially-aware mobile networking and computing; 2) security and privacy in wireless networking. Under this common theme, this dissertation can be broadly organized into three parts. The first part studies socially-aware mobile networking and computing. First, it studies random access control and power control under a social group utility maximization (SGUM) framework. The socially-aware Nash equilibria (SNEs) are derived and analyzed. Then, it studies mobile crowdsensing under an incentive mechanism that exploits social trust assisted reciprocity (STAR). The efficacy of …

Contributors
Gong, Xiaowen, Zhang, Junshan, Cochran, Douglas, et al.
Created Date
2015