Skip to main content

ASU Electronic Theses and Dissertations

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at

Nanolasers represents the research frontier in both the areas of photonics and nanotechnology for its interesting properties in low dimension physics, its appealing prospects in integrated photonics, and other on-chip applications. In this thesis, I present my research work on fabrication and characterization of a new type of nanolasers: metallic cavity nanolasers. The last ten years witnessed a dramatic paradigm shift from pure dielectric cavity to metallic cavity in the research of nanolasers. By using low loss metals such as silver, which is highly reflective at near infrared, light can be confined in an ultra small cavity or waveguide with …

Ding, Kang, Ning, Cun-Zheng, Yu, Hongbin, et al.
Created Date

Nanowires are one-dimensional (1D) structures with diameter on the nanometer scales with a high length-to-diameter aspect ratio. Nanowires of various materials including semiconductors, dielectrics and metals have been intensively researched in the past two decades for applications to electrical and optical devices. Typically, nanowires are synthesized using the vapor-liquid-solid (VLS) approach, which allows defect-free 1D growth despite the lattice mismatch between nanowires and substrates. Lattice mismatch issue is a serious problem in high-quality thin film growth of many semiconductors and non-semiconductors. Therefore, nanowires provide promising platforms for the applications requiring high crystal quality materials. With the 1D geometry, nanowires are …

Liu, Zhicheng, Ning, Cun-Zheng, Palais, Joseph, et al.
Created Date