Skip to main content

ASU Electronic Theses and Dissertations

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at

Organic optoelectronic devices have remained a research topic of great interest over the past two decades, particularly in the development of efficient organic photovoltaics (OPV) and organic light emitting diodes (OLED). In order to improve the efficiency, stability, and materials variety for organic optoelectronic devices a number of emitting materials, absorbing materials, and charge transport materials were developed and employed in a device setting. Optical, electrical, and photophysical studies of the organic materials and their corresponding devices were thoroughly carried out. Two major approaches were taken to enhance the efficiency of small molecule based OPVs: developing material with higher open …

Fleetham, Tyler, Li, Jian, Alford, Terry, et al.
Created Date

The automotive industry is committed to moving towards sustainable modes of transportation through electrified vehicles to improve the fuel economy with a reduced carbon footprint. In this context, battery-operated hybrid, plug-in hybrid and all-electric vehicles (EVs) are becoming commercially viable throughout the world. Lithium-ion (Li-ion) batteries with various active materials, electrolytes, and separators are currently being used for electric vehicle applications. Specifically, lithium-ion batteries with Lithium Iron Phosphate (LiFePO4 - LFP) and Lithium Nickel Manganese Cobalt Oxide (Li(NiMnCo)O2 - NMC) cathodes are being studied mainly due to higher cycle life and higher energy density values, respectively. In the present work, …

Vaidya, Rutvik Milind, Kannan, Arunachala Mada, Alford, Terry, et al.
Created Date