Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


The dissimilatory reduction of nitrate, or denitrification, offers the potential of a sustainable, cost effective method for the non-disruptive mitigation of earthquake-induced soil liquefaction. Worldwide, trillions of dollars of infrastructure are at risk for liquefaction damage in earthquake prone regions. However, most techniques for remediating liquefiable soils are either not applicable to sites near existing infrastructure, or are prohibitively expensive. Recently, laboratory studies have shown the potential for biogeotechnical soil improvement techniques such as microbially induced carbonate precipitation (MICP) to mitigate liquefaction potential in a non-disruptive manner. Multiple microbial processes have been identified for MICP, but only two have been …

Contributors
O'Donnell, Sean Thomas, Kavazanjian, Edward, Rittmann, Bruce, et al.
Created Date
2016