Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Date Range
2010 2018


In this thesis two methodologies have been proposed for evaluating the fault response of analog/RF circuits. These proposed approaches are used to evaluate the response of the faulty circuit in terms of specifications/measurements. Faulty response can be used to evaluate important test metrics like fail probability, fault coverage and yield coverage of given measurements under process variations. Once the models for faulty and fault free circuit are generated, one needs to perform Monte Carlo sampling (as opposed to Monte Carlo simulations) to compute these statistical parameters with high accuracy. The first method is based on adaptively determining the order of …

Contributors
Subrahmaniyan Radhakrishnan, Gurusubrahmaniyan, Ozev, Sule, Blain Christen, Jennifer, et al.
Created Date
2010

An investigation of phase noise in amplifier and voltage-controller oscillator (VCO) circuits was conducted to show that active direct-current (DC) bias techniques exhibit lower phase noise performance than traditional resistive DC bias techniques. Low-frequency high-gain amplifiers like those found in audio applications exhibit much better 1/f phase noise performance and can be used to bias amplifier or VCO circuits that work at much higher frequencies to reduce the phase modulation caused by higher frequency devices. An improvement in single-side-band (SSB) phase noise of 15 dB at offset frequencies less than 50 KHz was simulated and measured. Residual phase noise of …

Contributors
Baldwin, Jeremy Bart, Aberle, James, Bakkaloglu, Bertan, et al.
Created Date
2010

The drive towards device scaling and large output power in millimeter and sub-millimeter wave power amplifiers results in a highly non-linear, out-of-equilibrium charge transport regime. Particle-based Full Band Monte Carlo device simulators allow an accurate description of this carrier dynamics at the nanoscale. This work initially compares GaN high electron mobility transistors (HEMTs) based on the established Ga-face technology and the emerging N-face technology, through a modeling approach that allows a fair comparison, indicating that the N-face devices exhibit improved performance with respect to Ga-face ones due to the natural back-barrier confinement that mitigates short-channel-effects. An investigation is then carried …

Contributors
Guerra, Diego, Saraniti, Marco, Saraniti, Marco, et al.
Created Date
2011

In this thesis, a Built-in Self Test (BiST) based testing solution is proposed to measure linear and non-linear impairments in the RF Transmitter path using analytical approach. Design issues and challenges with the impairments modeling and extraction in transmitter path are discussed. Transmitter is modeled for I/Q gain & phase mismatch, system non-linearity and DC offset using Matlab. BiST architecture includes a peak detector which includes a self mode mixer and 200 MHz filter. Self Mode mixing operation with filtering removes the high frequency signal contents and allows performing analysis on baseband frequency signals. Transmitter impairments were calculated using spectral …

Contributors
Goyal, Nitin, Ozev, Sule, Duman, Tolga, et al.
Created Date
2011

Current sensing ability is one of the most desirable features of contemporary current or voltage mode controlled DC-DC converters. Current sensing can be used for over load protection, multi-stage converter load balancing, current-mode control, multi-phase converter current-sharing, load independent control, power efficiency improvement etc. There are handful existing approaches for current sensing such as external resistor sensing, triode mode current mirroring, observer sensing, Hall-Effect sensors, transformers, DC Resistance (DCR) sensing, Gm-C filter sensing etc. However, each method has one or more issues that prevent them from being successfully applied in DC-DC converter, e.g. low accuracy, discontinuous sensing nature, high sensitivity …

Contributors
Liu, Tao, Bakkaloglu, Bertan, Bakkaloglu, Bertan, et al.
Created Date
2011

Voltage Control Oscillator (VCO) is one of the most critical blocks in Phase Lock Loops (PLLs). LC-tank VCOs have a superior phase noise performance, however they require bulky passive resonators and often calibration architectures to overcome their limited tuning range. Ring oscillator (RO) based VCOs are attractive for digital technology applications owing to their ease of integration, small die area and scalability in deep submicron processes. However, due to their supply sensitivity and poor phase noise performance, they have limited use in applications demanding low phase noise floor, such as wireless or optical transceivers. Particularly, out-of-band phase noise of RO-based …

Contributors
Min, Seungkee, Kiaei, Sayfe, Bakkaloglu, Bertan, et al.
Created Date
2011

ABSTRACT To meet stringent market demands, manufacturers must produce Radio Frequency (RF) transceivers that provide wireless communication between electronic components used in consumer products at extremely low cost. Semiconductor manufacturers are in a steady race to increase integration levels through advanced system-on-chip (SoC) technology. The testing costs of these devices tend to increase with higher integration levels. As the integration levels increase and the devices get faster, the need for high-calibre low cost test equipment become highly dominant. However testing the overall system becomes harder and more expensive. Traditionally, the transceiver system is tested in two steps utilizing high-calibre RF …

Contributors
Sreenivassan, Aiswariya, Ozev, Sule, Kiaei, Sayfe, et al.
Created Date
2011

Sensing and controlling current flow is a fundamental requirement for many electronic systems, including power management (DC-DC converters and LDOs), battery chargers, electric vehicles, solenoid positioning, motor control, and power monitoring. Current Shunt Monitor (CSM) systems have various applications for precise current monitoring of those aforementioned applications. CSMs enable current measurement across an external sense resistor (RS) in series to current flow. Two different types of CSMs designed and characterized in this paper. First design used direct current reading method and the other design used indirect current reading method. Proposed CSM systems can sense power supply current ranging from 1mA …

Contributors
Yeom, Hyunsoo, Bakkaloglu, Bertan, Kiaei, Sayfe, et al.
Created Date
2011

Pulse Density Modulation- (PDM-) based class-D amplifiers can reduce non-linearity and tonal content due to carrier signal in Pulse Width Modulation - (PWM-) based amplifiers. However, their low-voltage analog implementations also require a linear- loop filter and a quantizer. A PDM-based class-D audio amplifier using a frequency-domain quantization is presented in this paper. The digital-intensive frequency domain approach achieves high linearity under low-supply regimes. An analog comparator and a single-bit quantizer are replaced with a Current-Controlled Oscillator- (ICO-) based frequency discriminator. By using the ICO as a phase integrator, a third-order noise shaping is achieved using only two analog integrators. …

Contributors
Lee, Junghan, Bakkaloglu, Bertan, Kiaei, Sayfe, et al.
Created Date
2011

Test cost has become a significant portion of device cost and a bottleneck in high volume manufacturing. Increasing integration density and shrinking feature sizes increased test time/cost and reduce observability. Test engineers have to put a tremendous effort in order to maintain test cost within an acceptable budget. Unfortunately, there is not a single straightforward solution to the problem. Products that are tested have several application domains and distinct customer profiles. Some products are required to operate for long periods of time while others are required to be low cost and optimized for low cost. Multitude of constraints and goals …

Contributors
Yilmaz, Ender, Ozev, Sule, Bakkaloglu, Bertan, et al.
Created Date
2012