Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Date Range
2011 2019


A good production schedule in a semiconductor back-end facility is critical for the on time delivery of customer orders. Compared to the front-end process that is dominated by re-entrant product flows, the back-end process is linear and therefore more suitable for scheduling. However, the production scheduling of the back-end process is still very difficult due to the wide product mix, large number of parallel machines, product family related setups, machine-product qualification, and weekly demand consisting of thousands of lots. In this research, a novel mixed-integer-linear-programming (MILP) model is proposed for the batch production scheduling of a semiconductor back-end facility. In …

Contributors
Fu, Mengying, Askin, Ronald G, Zhang, Muhong, et al.
Created Date
2011

This dissertation transforms a set of system complexity reduction problems to feature selection problems. Three systems are considered: classification based on association rules, network structure learning, and time series classification. Furthermore, two variable importance measures are proposed to reduce the feature selection bias in tree models. Associative classifiers can achieve high accuracy, but the combination of many rules is difficult to interpret. Rule condition subset selection (RCSS) methods for associative classification are considered. RCSS aims to prune the rule conditions into a subset via feature selection. The subset then can be summarized into rule-based classifiers. Experiments show that classifiers after …

Contributors
Deng, Houtao, Runger, George C, Lohr, Sharon L, et al.
Created Date
2011

Hydropower generation is one of the clean renewable energies which has received great attention in the power industry. Hydropower has been the leading source of renewable energy. It provides more than 86% of all electricity generated by renewable sources worldwide. Generally, the life span of a hydropower plant is considered as 30 to 50 years. Power plants over 30 years old usually conduct a feasibility study of rehabilitation on their entire facilities including infrastructure. By age 35, the forced outage rate increases by 10 percentage points compared to the previous year. Much longer outages occur in power plants older than …

Contributors
Kwon, Ogeuk, Holbert, Keith E, Heydt, Gerald T, et al.
Created Date
2011

Yield is a key process performance characteristic in the capital-intensive semiconductor fabrication process. In an industry where machines cost millions of dollars and cycle times are a number of months, predicting and optimizing yield are critical to process improvement, customer satisfaction, and financial success. Semiconductor yield modeling is essential to identifying processing issues, improving quality, and meeting customer demand in the industry. However, the complicated fabrication process, the massive amount of data collected, and the number of models available make yield modeling a complex and challenging task. This work presents modeling strategies to forecast yield using generalized linear models (GLMs) …

Contributors
Krueger, Dana Cheree, Montgomery, Douglas C., Fowler, John, et al.
Created Date
2011

With the rapid development of mobile sensing technologies like GPS, RFID, sensors in smartphones, etc., capturing position data in the form of trajectories has become easy. Moving object trajectory analysis is a growing area of interest these days owing to its applications in various domains such as marketing, security, traffic monitoring and management, etc. To better understand movement behaviors from the raw mobility data, this doctoral work provides analytic models for analyzing trajectory data. As a first contribution, a model is developed to detect changes in trajectories with time. If the taxis moving in a city are viewed as sensors …

Contributors
Kondaveeti, Anirudh, Runger, George, Mirchandani, Pitu, et al.
Created Date
2012

Temporal data are increasingly prevalent and important in analytics. Time series (TS) data are chronological sequences of observations and an important class of temporal data. Fields such as medicine, finance, learning science and multimedia naturally generate TS data. Each series provide a high-dimensional data vector that challenges the learning of the relevant patterns This dissertation proposes TS representations and methods for supervised TS analysis. The approaches combine new representations that handle translations and dilations of patterns with bag-of-features strategies and tree-based ensemble learning. This provides flexibility in handling time-warped patterns in a computationally efficient way. The ensemble learners provide a …

Contributors
Baydogan, Mustafa Gokce, Runger, George C, Atkinson, Robert, et al.
Created Date
2012

This dissertation presents methods for the evaluation of ocular surface protection during natural blink function. The evaluation of ocular surface protection is especially important in the diagnosis of dry eye and the evaluation of dry eye severity in clinical trials. Dry eye is a highly prevalent disease affecting vast numbers (between 11% and 22%) of an aging population. There is only one approved therapy with limited efficacy, which results in a huge unmet need. The reason so few drugs have reached approval is a lack of a recognized therapeutic pathway with reproducible endpoints. While the interplay between blink function and …

Contributors
Abelson, Richard Barrett, Montgomery, Douglas, Borror, Connie, et al.
Created Date
2012

This dissertation is to address product design optimization including reliability-based design optimization (RBDO) and robust design with epistemic uncertainty. It is divided into four major components as outlined below. Firstly, a comprehensive study of uncertainties is performed, in which sources of uncertainty are listed, categorized and the impacts are discussed. Epistemic uncertainty is of interest, which is due to lack of knowledge and can be reduced by taking more observations. In particular, the strategies to address epistemic uncertainties due to implicit constraint function are discussed. Secondly, a sequential sampling strategy to improve RBDO under implicit constraint function is developed. In …

Contributors
Zhuang, Xiaotian, Pan, Rong, Montgomery, Douglas C, et al.
Created Date
2012

This dissertation presents methods for addressing research problems that currently can only adequately be solved using Quality Reliability Engineering (QRE) approaches especially accelerated life testing (ALT) of electronic printed wiring boards with applications to avionics circuit boards. The methods presented in this research are generally applicable to circuit boards, but the data generated and their analysis is for high performance avionics. Avionics equipment typically requires 20 years expected life by aircraft equipment manufacturers and therefore ALT is the only practical way of performing life test estimates. Both thermal and vibration ALT induced failure are performed and analyzed to resolve industry …

Contributors
Juarez, Joseph Moses, Montgomery, Douglas C., Borror, Connie M., et al.
Created Date
2012

In recent years, service oriented computing (SOC) has become a widely accepted paradigm for the development of distributed applications such as web services, grid computing and cloud computing systems. In service-based systems (SBS), multiple service requests with specific performance requirements make services compete for system resources. IT service providers need to allocate resources to services so the performance requirements of customers can be satisfied. Workload and performance models are required for efficient resource management and service performance assurance in SBS. This dissertation develops two methods to understand and model the cause-effect relations of service-related activities with resources workload and service …

Contributors
Martinez Aranda, Billibaldo Iram, Ye, Nong, Wu, Tong, et al.
Created Date
2012