Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Date Range
2012 2018


Dwindling energy resources and associated environmental costs have resulted in a serious need to design and construct energy efficient buildings. One of the strategies to develop energy efficient structural materials is through the incorporation of phase change materials (PCM) in the host matrix. This research work presents details of a finite element-based framework that is used to study the thermal performance of structural precast concrete wall elements with and without a layer of phase change material. The simulation platform developed can be implemented for a wide variety of input parameters. In this study, two different locations in the continental United …

Contributors
Hembade, Lavannya, Neithalath, Narayanan, Rajan, Subramaniam, et al.
Created Date
2012

Ultra-concealable multi-threat body armor used by law-enforcement is a multi-purpose armor that protects against attacks from knife, spikes, and small caliber rounds. The design of this type of armor involves fiber-resin composite materials that are flexible, light, are not unduly affected by environmental conditions, and perform as required. The National Institute of Justice (NIJ) characterizes this type of armor as low-level protection armor. NIJ also specifies the geometry of the knife and spike as well as the strike energy levels required for this level of protection. The biggest challenges are to design a thin, lightweight and ultra-concealable armor that can …

Contributors
Vokshi, Erblina, Rajan, Subramaniam, Neithalath, Narayanan, et al.
Created Date
2012

The main objective of this study is to investigate the mechanical behaviour of cementitious based composites subjected dynamic tensile loading, with effects of strain rate, temperature, addition of short fibres etc. Fabric pullout model and tension stiffening model based on finite difference model, previously developed at Arizona State University were used to help study the bonding mechanism between fibre and matrix, and the phenomenon of tension stiffening due to the addition of fibres and textiles. Uniaxial tension tests were conducted on strain-hardening cement-based composites (SHCC), textile reinforced concrete (TRC) with and without addition of short fibres, at the strain rates …

Contributors
Yao, Yiming, Barzin, Mobasher, Rajan, Subramaniam, et al.
Created Date
2013

Manufacture of building materials requires significant energy, and as demand for these materials continues to increase, the energy requirement will as well. Offsetting this energy use will require increased focus on sustainable building materials. Further, the energy used in building, particularly in heating and air conditioning, accounts for 40 percent of a buildings energy use. Increasing the efficiency of building materials will reduce energy usage over the life time of the building. Current methods for maintaining the interior environment can be highly inefficient depending on the building materials selected. Materials such as concrete have low thermal efficiency and have a …

Contributors
Sharma, Breeann, Neithalath, Narayanan, Mobasher, Barzin, et al.
Created Date
2013

Buildings consume a large portion of the world's energy, but with the integration of phase change materials (PCMs) in building elements this energy cost can be greatly reduced. The addition of PCMs into building elements, however, becomes a challenge to model and analyze how the material actually affects the energy flow and temperatures in the system. This research work presents a comprehensive computer program used to model and analyze PCM embedded wall systems. The use of the finite element method (FEM) provides the tool to analyze the energy flow of these systems. Finite element analysis (FEA) can model the transient …

Contributors
Stockwell, Amie, Rajan, Subramaniam, Neithalath, Narayanan, et al.
Created Date
2013

The studies on aluminosilicate materials to replace traditional construction materials such as ordinary Portland cement(OPC) to reduce the effects caused has been an important research area for the past decades. Many properties like strength have already been studied and the primary focus is to learn about the reaction mechanism and the effect of the parameters on the formed products. The aim of this research was to explore the structural changes and reaction product analysis of geopolymers (Slag & Fly Ash) using Fourier transform infrared spectroscopy (FTIR) and deconvolution techniques. Spectroscopic techniques give valuable information at a molecular level but not …

Contributors
Madavarapu, Sateesh Babu, Neithalath, Narayanan, Rajan, Subramaniam, et al.
Created Date
2014

Concrete is the most widely used infrastructure material worldwide. Production of portland cement, the main binding component in concrete, has been shown to require significant energy and account for approximately 5-7% of global carbon dioxide production. The expected continued increased use of concrete over the coming decades indicates this is an ideal time to implement sustainable binder technologies. The current work aims to explore enhanced sustainability concretes, primarily in the context of limestone and flow. Aspects such as hydration kinetics, hydration product formation and pore structure add to the understanding of the strength development and potential durability characteristics of these …

Contributors
Vance, Kirk Erik, Neithalath, Narayanan, Rajan, Subramaniam, et al.
Created Date
2014

The demand for portland cement concrete is expected to increase over time. There is a need to develop a more sustainable cementitious systems in order to reduce the negative environmental impacts associated with ordinary portland cement (OPC) production. An attempt is made to investigate sustainable binder solutions through the use of alternative cementitious materials at high levels of volume replacement. Limestone, an abundant material is used as a filler in low water-to-powder concretes where a substantial fraction of the portland cement remains unhydrated. At high volume OPC replacement, 20% and 35%, the combination of limestone and an alumina source has …

Contributors
Aguayo, Matthew Joseph, Neithalath, Narayanan, Rajan, Subramaniam, et al.
Created Date
2014

Laminated composite materials are used in aerospace, civil and mechanical structural systems due to their superior material properties compared to the constituent materials as well as in comparison to traditional materials such as metals. Laminate structures are composed of multiple orthotropic material layers bonded together to form a single performing part. As such, the layup design of the material largely influences the structural performance. Optimization techniques such as the Genetic Algorithm (GA), Differential Evolution (DE), the Method of Feasible Directions (MFD), and others can be used to determine the optimal laminate composite material layup. In this thesis, sizing, shape and …

Contributors
Mika, Krista Nicole, Rajan, Subramaniam, Neithalath, Narayanan, et al.
Created Date
2014

In this thesis, the author described a new genetic algorithm based on the idea: the better design could be found at the neighbor of the current best design. The details of the new genetic algorithm are described, including the rebuilding process from Micro-genetic algorithm and the different crossover and mutation formation. Some popular examples, including two variable function optimization and simple truss models are used to test this algorithm. In these study, the new genetic algorithm is proved able to find the optimized results like other algorithms. Besides, the author also tried to build one more complex truss model. After …

Contributors
Ding, Xiaosu, Hjelmstad, keith, Neithalath, Narayanan, et al.
Created Date
2015