Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Resource Type
  • Masters Thesis
Date Range
2011 2019


Semiconductor nanowires are featured by their unique one-dimensional structure which makes them promising for small scale electronic and photonic device applications. Among them, III-V material nanowires are particularly outstanding due to their good electronic properties. In bulk, these materials reveal electron mobility much higher than conventional silicon based devices, for example at room temperature, InAs field effect transistor (FET) has electron mobility of 40,000 cm2/Vs more than 10 times of Si FET. This makes such materials promising for high speed nanowire FETs. With small bandgap, such as 0.354 eV for InAs and 1.52 eV for GaAs, it does not need …

Contributors
Liang, Hanshuang, Yu, Hongbin, Ferry, David, et al.
Created Date
2011

Semiconductor devices are generally analyzed with relatively simple equations or with detailed computer simulations. Most text-books use these simple equations and show device diagrams that are frequently very simplified and occasionally incorrect. For example, the carrier densities near the pinch-off point in MOSFETs and JFETs and the minority carrier density in the base near the reverse-biased base-collector junction are frequently assumed to be zero or near zero. Also the channel thickness at the pinch-off point is often shown to approach zero. None of these assumptions can be correct. The research in thesis addresses these points. I simulated the carrier densities, …

Contributors
Yang, Xuan, Schroder, Dieter K, Vasileska, Dragica, et al.
Created Date
2011

As the 3rd generation solar cell, quantum dot solar cells are expected to outperform the first 2 generations with higher efficiency and lower manufacture cost. Currently the main problems for QD cells are the low conversion efficiency and stability. This work is trying to improve the reliability as well as the device performance by inserting an interlayer between the metal cathode and the active layer. Titanium oxide and a novel nitrogen doped titanium oxide were compared and TiOxNy capped device shown a superior performance and stability to TiOx capped one. A unique light anneal effect on the interfacial layer was …

Contributors
Yu, Jialin, Jabbour, Ghassan E, Alford, Terry L, et al.
Created Date
2011

Built-in-Self-Test (BiST) for transmitters is a desirable choice since it eliminates the reliance on expensive instrumentation to do RF signal analysis. Existing on-chip resources, such as power or envelope detectors, or small additional circuitry can be used for BiST purposes. However, due to limited bandwidth, measurement of complex specifications, such as IQ imbalance, is challenging. In this work, a BiST technique to compute transmitter IQ imbalances using measurements out of a self-mixing envelope detector is proposed. Both the linear and non linear parameters of the RF transmitter path are extracted successfully. We first derive an analytical expression for the output …

Contributors
Byregowda, Srinath, Ozev, Sule, Cao, Yu, et al.
Created Date
2012

Nanowires (NWs) have attracted many interests due to their advance in synthesis and their unique structural, electrical and optical properties. NWs have been realized as promising candidates for future photonic platforms. In this work, erbium chloride silicate (ECS), CdS and CdSSe NWs growth by vapor-liquid-solid mechanism and their characterization were demonstrated. In the ECS NWs part, systematic experiments were performed to investigate the relation between growth temperature and NWs structure. Scanning electron microscopy, Raman spectroscopy, X-ray diffraction and photoluminescence characterization were used to study the NWs morphology, crystal quality and optical properties. At low growth temperature, there was strong Si …

Contributors
Ning, Hao, Ning, Cunzheng, Yu, Hongbin, et al.
Created Date
2012

This thesis mainly focuses on the study of quantum efficiency (QE) and its measurement, especially for nanowires (NWs). First, a brief introduction of nano-technology and nanowire is given to describe my initial research interest. Next various fundamental kinds of recombination mechanisms are described; both for radiative and non-radiative processes. This is an introduction for defining the internal quantum efficiency (IQE). A relative IQE measurement method is shown following that. Then it comes to the major part of the thesis discussing a procedure of quantum efficiency measurement using photoluminescence (PL) method and an integrating sphere, which has not been much applied …

Contributors
Chen, Dongzi, Ning, Cun-Zheng, Zhang, Yong-Hang, et al.
Created Date
2012

In this work, I worked on the synthesis and characterization of nanowires and belts, grown using different materials, in Chemical Vapor Deposition (CVD) system with catalytic growth method. Through this thesis, I utilized the Photoluminescence (PL), Secondary Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray diffraction (XRD) analyses to find out the properties of Erbium Chloride Silicate (ECS) and two segment CdS-CdSe samples. In the first part of my research, growth of very new material, Erbium Chloride Silicate (ECS), in form of core/shell Si/ECS and pure ECS nanowires, was demonstrated. This new material has very fascinating properties for new …

Contributors
Turkdogan, Sunay, Ning, Cun-Zheng, Tao, Meng, et al.
Created Date
2012

Fluxgate sensors are magnetic field sensors that can measure DC and low frequency AC magnetic fields. They can measure much lower magnetic fields than other magnetic sensors like Hall effect sensors, magnetoresistive sensors etc. They also have high linearity, high sensitivity and low noise. The major application of fluxgate sensors is in magnetometers for the measurement of earth's magnetic field. Magnetometers are used in navigation systems and electronic compasses. Fluxgate sensors can also be used to measure high DC currents. Integrated micro-fluxgate sensors have been developed in recent years. These sensors have much lower power consumption and area compared to …

Contributors
Pappu, Karthik, Bakkaloglu, Bertan, Christen, Jennifer Blain, et al.
Created Date
2013

This thesis summarizes modeling and simulation of plasmonic waveguides and nanolasers. The research includes modeling of dielectric constants of doped semiconductor as a potential plasmonic material, simulation of plasmonic waveguides with different configurations and geometries, simulation and design of plasmonic nanolasers. In the doped semiconductor part, a more accurate model accounting for dielectric constant of doped InAs was proposed. In the model, Interband transitions accounted for by Adachi's model considering Burstein-Moss effect and free electron effect governed by Drude model dominate in different spectral regions. For plasmonic waveguide part, Insulator-Metal-Insulator (IMI) waveguide, silver nanowire waveguide with and without substrate, Metal-Semiconductor-Metal …

Contributors
Wang, Haotong, Ning, Cunzheng, Palais, Joseph, et al.
Created Date
2014

Skin electronics is one of the most promising applications of stretchable electronics. The versatility of skin electronics can only be guaranteed when it has conformal contact with human skin. While both analytical and numerical solutions for contact between serpentine interconnects and soft substrate remain unreported, the motivation of this thesis is to render a novel method to numerically study the conformability of the serpentine interconnects. This thesis explained thoroughly how to conduct finite element analysis for the conformability of skin electronics, including modeling, meshing method and step setup etc.. User-defined elements were implemented to the finite element commercial package ABAQUS …

Contributors
Fan, Yiling, Jiang, Hanqing, Hildreth, Owen, et al.
Created Date
2015