Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.




Each year, millions of aging women will experience menopause, a transition from reproductive capability to reproductive senescence. In women, this transition is characterized by depleted ovarian follicles, declines in levels of sex hormones, and a dysregulation of gonadotrophin feedback loops. Consequently, menopause is accompanied by hot flashes, urogenital atrophy, cognitive decline, and other symptoms that reduce quality of life. To ameliorate these negative consequences, estrogen-containing hormone therapy is prescribed. Findings from clinical and pre-clinical research studies suggest that menopausal hormone therapies can benefit memory and associated neural substrates. However, findings are variable, with some studies reporting null or even detrimental …

Contributors
Engler-Chiurazzi, Elizabeth, Bimonte-Nelson, Heather A, Sanabria, Federico, et al.
Created Date
2013

The brain is a fundamental target of the stress response that promotes adaptation and survival but the repeated activation of the stress response has the potential alter cognition, emotion, and motivation, key functions of the limbic system. Three structures of the limbic system in particular, the hippocampus, medial prefrontal cortex (mPFC), and amygdala, are of special interest due to documented structural changes and their implication in post-traumatic stress disorder (PTSD). One of many notable chronic stress-induced changes include dendritic arbor restructuring, which reflect plasticity patterns in parallel with the direction of alterations observed in functional imaging studies in PTSD patients. …

Contributors
Hoffman, Ann, Conrad, Cheryl D, Olive, M. Foster, et al.
Created Date
2013

This research is focused on two separate but related topics. The first uses an electroencephalographic (EEG) brain-computer interface (BCI) to explore the phenomenon of motor learning transfer. The second takes a closer look at the EEG-BCI itself and tests an alternate way of mapping EEG signals into machine commands. We test whether motor learning transfer is more related to use of shared neural structures between imagery and motor execution or to more generalized cognitive factors. Using an EEG-BCI, we train one group of participants to control the movements of a cursor using embodied motor imagery. A second group is trained …

Contributors
Da Silva, Flavio J.K., Mcbeath, Michael K, Helms Tillery, Stephen, et al.
Created Date
2013

Patients with schizophrenia have impaired cognitive flexibility, as evidenced by behaviors of perseveration. Cognitive impairments may be due to dysregulation of glutamate and/or loss of neuronal plasticity in the medial prefrontal cortex (mPFC). The purpose of these studies was to examine the effects of mGluR5 positive allosteric modulators (PAMs) alone and in combination with the NMDAR antagonist MK-801, a pharmacological model of schizophrenia. An operant-based cognitive set-shifting task was utilized to assess cognitive flexibility, in vivo microdialysis procedures to measure extracellular glutamate levels in the mPFC, and diolistic labeling to assess the effects on dendritic spine density and morphology in …

Contributors
LaCrosse, Amber, Olive, Michael, Olive, Michael, et al.
Created Date
2014

Intermittent social defeat stress produces vulnerability to drugs of abuse, a phenomena known as cross-sensitization, which is proceeded by a corresponding upregulation of ventral tegmental area (VTA) mu-opioid receptors (MORs). Since VTA MORs are implicated in the expression of psychostimulant sensitization, they may also mediate social stress-induced vulnerability to drugs of abuse. Social stress and drugs of abuse increase mesolimbic brain-derived neurotrophic factor (BDNF) signaling with its receptor, tropomyosin-related kinase B (TrkB). These studies examined whether VTA MOR signaling is important for the behavioral and cellular consequences of social stress. First, the function of VTA MORs in the behavioral consequences …

Contributors
Johnston, Caitlin Elizabeth, Hammer, Ronald P., Nikulina, Ella M., et al.
Created Date
2015

MicroRNAs are small, non-coding transcripts that post-transcriptionally regulate expression of multiple genes. Recently microRNAs have been linked to the etiology of neuropsychiatric disorders, including drug addiction. Following genome-wide sequence analyses, microRNA-495 (miR-495) was found to target several genes within the Knowledgebase of Addiction-Related Genes (KARG) database and to be highly expressed in the nucleus accumbens (NAc), a pivotal brain region involved in reward and motivation. The central hypothesis of this dissertation is that NAc miR-495 regulates drug abuse-related behavior by targeting several addiction-related genes (ARGs). I tested this hypothesis in two ways: 1) by examining the effects of viral-mediated miR-495 …

Contributors
Bastle, Ryan, Neisewander, Janet, Newbern, Jason, et al.
Created Date
2016

Timing performance is sensitive to fluctuations in time and motivation, thus interval timing and motivation are either inseparable or conflated processes. A behavioral systems model (e.g., Timberlake, 2000) of timing performance (Chapter 1) suggests that timing performance in externally-initiated (EI) procedures conflates behavioral modes differentially sensitive to motivation, but that response-initiated (RI) procedures potentially dissociate these behavioral modes. That is, timing performance in RI procedures is expected to not conflate these behavioral modes. According to the discriminative RI hypothesis, as initiating-responses become progressively discriminable from target responses, initiating-responses increasingly dissociate interval timing and motivation. Rats were trained in timing procedures …

Contributors
Daniels, Carter W, Sanabria, Federico, McClure, Samuel M., et al.
Created Date
2018