Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Geopolymers, a class of X-ray amorphous, ceramic-like aluminosilicate materials are produced at ambient temperatures through a process called geopolymerization. Due to both low energy requirement during synthesis and interesting mechanical and chemical properties, geopolymers are grabbing enormous attention. Although geopolymers have a broad range of applications including thermal/acoustic insulation and waste immobilization, they are always prepared in monolithic form. The primary aim of this study is to produce new nanostructured materials from the geopolymerization process, including porous monoliths and powders. In view of the current interest in porous geopolymers for non-traditional applications, it is becoming increasingly important to develop synthetic …

Contributors
Medpelli, Dinesh, Seo, Dong-Kyun, Herckes, Pierre, et al.
Created Date
2015

Flame retardants (FRs) are applied to variety of consumer products such as textiles and polymers for fire prevention and fire safety. Substantial research is ongoing to replace traditional FRs with alternative materials that are less toxic, present higher flame retardancy and result in lower overall exposure as there are potential health concerns in case of exposure to popular FRs. Carbonaceous nanomaterials (CNMs) such as carbon nanotubes (CNTs) and graphene oxide (GO) have been studied and applied to polymer composites and electronics extensively due to their remarkable properties. Hence CNMs are considered as potential alternative materials that present high flame retardancy. …

Contributors
Nosaka, Takayuki, Herckes, Pierre, Westerhoff, Paul, et al.
Created Date
2018