Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


This dissertation is intended to tie together a body of work which utilizes a variety of methods to study applied mathematical models involving heterogeneity often omitted with classical modeling techniques. I posit three cogent classifications of heterogeneity: physiological, behavioral, and local (specifically connectivity in this work). I consider physiological heterogeneity using the method of transport equations to study heterogeneous susceptibility to diseases in open populations (those with births and deaths). I then present three separate models of behavioral heterogeneity. An SIS/SAS model of gonorrhea transmission in a population of highly active men-who-have-sex-with-men (MSM) is presented to study the impact of …

Contributors
Morin, Benjamin Richard, Castillo-Chavez, Carlos, Hiebeler, David, et al.
Created Date
2012

Chapter 1 introduces some key elements of important topics such as; quantum mechanics, representation theory of the Lorentz and Poincare groups, and a review of some basic rela- ´ tivistic wave equations that will play an important role in the work to follow. In Chapter 2, a complex covariant form of the classical Maxwell’s equations in a moving medium or at rest is introduced. In addition, a compact, Lorentz invariant, form of the energy-momentum tensor is derived. In chapter 3, the concept of photon helicity is critically analyzed and its connection with the Pauli-Lubanski vector from the viewpoint of the …

Contributors
Lanfear, Nathan A., Suslov, Sergei, Kotschwar, Brett, et al.
Created Date
2016