Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Divergence-free vector field interpolants properties are explored on uniform and scattered nodes, and also their application to fluid flow problems. These interpolants may be applied to physical problems that require the approximant to have zero divergence, such as the velocity field in the incompressible Navier-Stokes equations and the magnetic and electric fields in the Maxwell's equations. In addition, the methods studied here are meshfree, and are suitable for problems defined on complex domains, where mesh generation is computationally expensive or inaccurate, or for problems where the data is only available at scattered locations. The contributions of this work include a …

Contributors
Araujo Mitrano, Arthur, Platte, Rodrigo, Wright, Grady, et al.
Created Date
2016

The three-dimensional flow contained in a rapidly rotating circular split cylinder is studied numerically solving the Navier--Stokes equations. The cylinder is completely filled with fluid and is split at the midplane. Three different types of boundary conditions were imposed, leading to a variety of instabilities and complex flow dynamics. The first configuration has a strong background rotation and a small differential rotation between the two halves. The axisymmetric flow was first studied identifying boundary layer instabilities which produce inertial waves under some conditions. Limit cycle states and quasiperiodic states were found, including some period doubling bifurcations. Then, a three-dimensional study …

Contributors
Gutierrez Castillo, Paloma, Lopez, Juan M., Herrmann, Marcus, et al.
Created Date
2017

Functional magnetic resonance imaging (fMRI) is one of the popular tools to study human brain functions. High-quality experimental designs are crucial to the success of fMRI experiments as they allow the collection of informative data for making precise and valid inference with minimum cost. The primary goal of this study is on identifying the best sequence of mental stimuli (i.e. fMRI design) with respect to some statistically meaningful optimality criteria. This work focuses on two related topics in this research field. The first topic is on finding optimal designs for fMRI when the design matrix is uncertain. This challenging design …

Contributors
Zhou, Lin, Kao, Ming-Hung, Welfert, Bruno, et al.
Created Date
2017

The Kuramoto model is an archetypal model for studying synchronization in groups of nonidentical oscillators where oscillators are imbued with their own frequency and coupled with other oscillators though a network of interactions. As the coupling strength increases, there is a bifurcation to complete synchronization where all oscillators move with the same frequency and show a collective rhythm. Kuramoto-like dynamics are considered a relevant model for instabilities of the AC-power grid which operates in synchrony under standard conditions but exhibits, in a state of failure, segmentation of the grid into desynchronized clusters. In this dissertation the minimum coupling strength required …

Contributors
Gilg, Brady, Armbruster, Dieter, Mittelmann, Hans, et al.
Created Date
2018