Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.




A functioning food web is the basis of a functioning community and ecosystem. Thus, it is important to understand the dynamics that control species behaviors and interactions. Alterations to the fundamental dynamics can prove detrimental to the future success of our environment. Research and analysis focus on the global dynamics involved in intraguild predation (IGP), a three species subsystem involving both competition and predation. A mathematical model is derived using differential equations based on pre-existing models to accurately predict species behavior. Analyses provide sufficient conditions for species persistence and extinction that can be used to explain global dynamics. Dynamics are …

Contributors
Wedekin, Lauren Nicole, Kang, Yun, Green, Douglas, et al.
Created Date
2012

In complex consumer-resource type systems, where diverse individuals are interconnected and interdependent, one can often anticipate what has become known as the tragedy of the commons, i.e., a situation, when overly efficient consumers exhaust the common resource, causing collapse of the entire population. In this dissertation I use mathematical modeling to explore different variations on the consumer-resource type systems, identifying some possible transitional regimes that can precede the tragedy of the commons. I then reformulate it as a game of a multi-player prisoner's dilemma and study two possible approaches for preventing it, namely direct modification of players' payoffs through punishment/reward …

Contributors
Kareva, Irina, Castillo-Chavez, Carlos, Collins, James, et al.
Created Date
2012

This work is an assemblage of three applied projects that address the institutional and spatial constraints to managing threatened and endangered (T & E) terrestrial species. The first project looks at the role of the Endangered Species Act (ESA) in protecting wildlife and whether banning non–conservation activities on multi-use federal lands is socially optimal. A bioeconomic model is used to identify scenarios where ESA–imposed regulations emerge as optimal strategies and to facilitate discussion on feasible long–term strategies in light of the ongoing public land–use debate. Results suggest that banning harmful activities is a preferred strategy when valued species are in …

Contributors
Salau, Kehinde Rilwan, Janssen, Marco A, Fenichel, Eli P, et al.
Created Date
2013

A key factor in the success of social animals is their organization of work. Mathematical models have been instrumental in unraveling how simple, individual-based rules can generate collective patterns via self-organization. However, existing models offer limited insights into how these patterns are shaped by behavioral differences within groups, in part because they focus on analyzing specific rules rather than general mechanisms that can explain behavior at the individual-level. My work argues for a more principled approach that focuses on the question of how individuals make decisions in costly environments. In Chapters 2 and 3, I demonstrate how this approach provides …

Contributors
Udiani, Oyita Udiani, Kang, Yun, Fewell, Jennifer H, et al.
Created Date
2016

In recent decades, marine ecologists have conducted extensive field work and experiments to understand the interactions between bacteria and bacteriophage (phage) in marine environments. This dissertation provides a detailed rigorous framework for gaining deeper insight into these interactions. Specific features of the dissertation include the design of a new deterministic Lotka-Volterra model with n + 1 bacteria, n/n + 1 phage, with explicit nutrient, where the jth phage strain infects the first j bacterial strains, a perfectly nested infection network (NIN). This system is subject to trade-off conditions on the life-history traits of both bacteria and phage given in an …

Contributors
Korytowski, Daniel A., Smith, Hal, Gumel, Abba, et al.
Created Date
2016

The most advanced social insects, the eusocial insects, form often large societies in which there is reproductive division of labor, queens and workers, have overlapping generations, and cooperative brood care where daughter workers remain in the nest with their queen mother and care for their siblings. The eusocial insects are composed of representative species of bees and wasps, and all species of ants and termites. Much is known about their organizational structure, but remains to be discovered. The success of social insects is dependent upon cooperative behavior and adaptive strategies shaped by natural selection that respond to internal or external …

Contributors
Rodriguez Messan, Marisabel, Kang, Yun, Castillo-Chavez, Carlos, et al.
Created Date
2018