Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Presented is a study on the chemotaxis reaction process and its relation with flow topology. The effect of coherent structures in turbulent flows is characterized by studying nutrient uptake and the advantage that is received from motile bacteria over other non-motile bacteria. Variability is found to be dependent on the initial location of scalar impurity and can be tied to Lagrangian coherent structures through recent advances in the identification of finite-time transport barriers. Advantage is relatively small for initial nutrient found within high stretching regions of the flow, and nutrient within elliptic structures provide the greatest advantage for motile species. …

Contributors
Jones, Kimberly, Tang, Wenbo, Kang, Yun, et al.
Created Date
2015

The tools developed for the use of investigating dynamical systems have provided critical understanding to a wide range of physical phenomena. Here these tools are used to gain further insight into scalar transport, and how it is affected by mixing. The aim of this research is to investigate the efficiency of several different partitioning methods which demarcate flow fields into dynamically distinct regions, and the correlation of finite-time statistics from the advection-diffusion equation to these regions. For autonomous systems, invariant manifold theory can be used to separate the system into dynamically distinct regions. Despite there being no equivalent method for …

Contributors
Walker, Phillip, Tang, Wenbo, Kostelich, Eric, et al.
Created Date
2018