Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Subject
Date Range
2010 2019


Peptides offer great promise as targeted affinity ligands, but the space of possible peptide sequences is vast, making experimental identification of lead candidates expensive, difficult, and uncertain. Computational modeling can narrow the search by estimating the affinity and specificity of a given peptide in relation to a predetermined protein target. The predictive performance of computational models of interactions of intermediate-length peptides with proteins can be improved by taking into account the stochastic nature of the encounter and binding dynamics. A theoretical case is made for the hypothesis that, because of the flexibility of the peptide and the structural complexity of …

Contributors
Emery, Jack Scott, Pizziconi, Vincent B, Woodbury, Neal W, et al.
Created Date
2010

Enzymes which regulate the metabolic reactions for sustaining all living things, are the engines of life. The discovery of molecules that are able to control enzyme activity is of great interest for therapeutics and the biocatalysis industry. Peptides are promising enzyme modulators due to their large chemical diversity and the existence of well-established methods for library synthesis. Microarrays represent a powerful tool for screening thousands of molecules, on a small chip, for candidates that interact with enzymes and modulate their functions. In this work, a method is presented for screening high-density arrays to discover peptides that bind and modulate enzyme …

Contributors
Fu, Jinglin, Woodbury, Neal W, Johnston, Stephen A, et al.
Created Date
2010

Building mathematical models and examining the compatibility of their theoretical predictions with empirical data are important for our understanding of evolution. The rapidly increasing amounts of genomic data on polymorphisms greatly motivate evolutionary biologists to find targets of positive selection. Although intensive mathematical and statistical studies for characterizing signatures of positive selection have been conducted to identify targets of positive selection, relatively little is known about the effects of other evolutionary forces on signatures of positive selection. In this dissertation, I investigate the effects of various evolutionary factors, including purifying selection and population demography, on signatures of positive selection. Specifically, …

Contributors
Maruki, Takahiro, Kim, Yuseob, Taylor, Jesse E, et al.
Created Date
2011

Immunosignaturing is a new immunodiagnostic technology that uses random-sequence peptide microarrays to profile the humoral immune response. Though the peptides have little sequence homology to any known protein, binding of serum antibodies may be detected, and the pattern correlated to disease states. The aim of my dissertation is to analyze the factors affecting the binding patterns using monoclonal antibodies and determine how much information may be extracted from the sequences. Specifically, I examined the effects of antibody concentration, competition, peptide density, and antibody valence. Peptide binding could be detected at the low concentrations relevant to immunosignaturing, and a monoclonal's signature …

Contributors
Halperin, Rebecca Faith, Johnston, Stephen A, Bordner, Andrew, et al.
Created Date
2011

The technology expansion seen in the last decade for genomics research has permitted the generation of large-scale data sources pertaining to molecular biological assays, genomics, proteomics, transcriptomics and other modern omics catalogs. New methods to analyze, integrate and visualize these data types are essential to unveil relevant disease mechanisms. Towards these objectives, this research focuses on data integration within two scenarios: (1) transcriptomic, proteomic and functional information and (2) real-time sensor-based measurements motivated by single-cell technology. To assess relationships between protein abundance, transcriptomic and functional data, a nonlinear model was explored at static and temporal levels. The successful integration of …

Contributors
Torres Garcia, Wandaliz, Meldrum, Deirdre R., Runger, George C., et al.
Created Date
2011

In many classication problems data samples cannot be collected easily, example in drug trials, biological experiments and study on cancer patients. In many situations the data set size is small and there are many outliers. When classifying such data, example cancer vs normal patients the consequences of mis-classication are probably more important than any other data type, because the data point could be a cancer patient or the classication decision could help determine what gene might be over expressed and perhaps a cause of cancer. These mis-classications are typically higher in the presence of outlier data points. The aim of …

Contributors
Gupta, Sidharth, Kim, Seungchan, Welfert, Bruno, et al.
Created Date
2011

Genes have widely different pertinences to the etiology and pathology of diseases. Thus, they can be ranked according to their disease-significance on a genomic scale, which is the subject of gene prioritization. Given a set of genes known to be related to a disease, it is reasonable to use them as a basis to determine the significance of other candidate genes, which will then be ranked based on the association they exhibit with respect to the given set of known genes. Experimental and computational data of various kinds have different reliability and relevance to a disease under study. This work …

Contributors
Lee, Jang, Gonzalez, Graciela, Ye, Jieping, et al.
Created Date
2011

Genomic and proteomic sequences, which are in the form of deoxyribonucleic acid (DNA) and amino acids respectively, play a vital role in the structure, function and diversity of every living cell. As a result, various genomic and proteomic sequence processing methods have been proposed from diverse disciplines, including biology, chemistry, physics, computer science and electrical engineering. In particular, signal processing techniques were applied to the problems of sequence querying and alignment, that compare and classify regions of similarity in the sequences based on their composition. However, although current approaches obtain results that can be attributed to key biological properties, they …

Contributors
Ravichandran, Lakshminarayan, Papandreou-Suppappola, Antonia, Spanias, Andreas S, et al.
Created Date
2011

Rhodoferax antarcticus strain ANT.BR, a purple nonsulfur bacterium isolated from a microbial mat in Ross Island, Antarctica, is the first described anoxygenic phototrophic bacterium that is adapted to cold habitats and is the first beta-proteobacterium to undergo complete genome sequencing. R. antarcticus has unique absorption spectra and there are no obvious intracytoplasmic membranes in cells grown phototrophically, even under low light intensity. Analysis of the finished genome sequence reveals a single chromosome (3,809,266 bp) and a large plasmid (198,615 bp) that together harbor 4,262 putative genes. The genome contains two types of Rubiscos, Form IAq and Form II, which are …

Contributors
Zhao, Tingting, Touchman, Jeffrey, Rosenberg, Michael, et al.
Created Date
2011

Given the process of tumorigenesis, biological signaling pathways have become of interest in the field of oncology. Many of the regulatory mechanisms that are altered in cancer are directly related to signal transduction and cellular communication. Thus, identifying signaling pathways that have become deregulated may provide useful information to better understanding altered regulatory mechanisms within cancer. Many methods that have been created to measure the distinct activity of signaling pathways have relied strictly upon transcription profiles. With advancements in comparative genomic hybridization techniques, copy number data has become extremely useful in providing valuable information pertaining to the genomic landscape of …

Contributors
Trevino, Robert, Kim, Seungchan, Ringner, Markus, et al.
Created Date
2011