Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


[FeFe]-hydrogenases are enzymes for the reduction of protons to hydrogen. They rely on only the earth abundant first-row transition metal iron at their active site (H cluster). In recent years, a multitude of diiron mimics of hydrogenases have been synthesized, but none of them catalyzes hydrogen production with the same exquisite combination of high turnover frequency and low activation energy as the enzymes. Generally, model complexes fail to include one or both of two features essential to the natural enzyme: an intricate array of outer coordination sphere contacts that constrain the coordination geometry to attain a catalytically optimal conformation, and …

Contributors
Roy, Souvik, Jones, Anne K, Moore, Thomas, et al.
Created Date
2013

Since the discovery of graphene, two dimensional materials (2D materials) have become a focus of interest for material research due to their many unique physical properties embedded in their 2D structure. While they host many exciting potential applications, some of these 2D materials are subject to environmental instability issues induced by interaction between material and gas molecules in air, which poses a barrier to further application and manufacture. To overcome this, it is necessary to understand the origin of material instability and interaction with molecules commonly found in air, as well as developing a reproducible and manufacturing compatible method to …

Contributors
Yang, Sijie, Tongay, Sefaattin, Gould, Ian, et al.
Created Date
2017

The work described in this thesis explores the synthesis of new semiconductors in the Si-Ge-Sn system for application in Si-photonics. Direct gap Ge1-ySny (y=0.12-0.16) alloys with enhanced light emission and absorption are pursued. Monocrystalline layers are grown on Si platforms via epitaxy-driven reactions between Sn- and Ge-hydrides using compositionally graded buffer layers that mitigate lattice mismatch between the epilayer and Si platforms. Prototype p-i-n structures are fabricated and are found to exhibit direct gap electroluminescence and tunable absorption edges between 2200 and 2700 nm indicating applications in LEDs and detectors. Additionally, a low pressure technique is described producing pseudomorphic Ge1-ySny …

Contributors
Wallace, Patrick Michael, Kouvetakis, John, Menendez, Jose, et al.
Created Date
2018

Mitochondria are energy-producing organelles present in eukaryotic cells. Energy as adenosine triphosphate (ATP) is produced at the end of a series of electron transfers called the electron transport chain (ETC). Such a highly coordinated and regulated series of electron transfer reactions give rise to a small percentage of electron leakage which, by the subsequent reduction of molecular oxygen, produce superoxide anions (O2.-). These anions initiate the production of additional highly reactive oxygen-containing radicals commonly known as reactive oxygen species (ROS). Although cells are equipped with endogenous antioxidant systems to minimize ROS accumulation, these endogenous defense systems become inadequate when ROS …

Contributors
Bandyopadhyay, Indrajit, Hecht, Sidney M, Gould, Ian R, et al.
Created Date
2019