Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.




Stream computing has emerged as an importantmodel of computation for embedded system applications particularly in the multimedia and network processing domains. In recent past several programming languages and embedded multi-core processors have been proposed for streaming applications. This thesis examines the execution and dynamic scheduling of stream programs on embedded multi-core processors. The thesis addresses the problem in the context of a multi-tasking environment with a time varying allocation of processing elements for a particular streaming application. As a solution the thesis proposes a two step approach where the stream program is compiled to gather key application information, and to …

Contributors
Lee, Haeseung, Chatha, Karamvir, Vrudhula, Sarma, et al.
Created Date
2013

Multicore processors have proliferated in nearly all forms of computing, from servers, desktop, to smartphones. The primary reason for this large adoption of multicore processors is due to its ability to overcome the power-wall by providing higher performance at a lower power consumption rate. With multi-cores, there is increased need for dynamic energy management (DEM), much more than for single-core processors, as DEM for multi-cores is no more a mechanism just to ensure that a processor is kept under specified temperature limits, but also a set of techniques that manage various processor controls like dynamic voltage and frequency scaling (DVFS), …

Contributors
Hanumaiah, Vinay, Vrudhula, Sarma, Chatha, Karamvir, et al.
Created Date
2013

With increasing transistor volume and reducing feature size, it has become a major design constraint to reduce power consumption also. This has given rise to aggressive architectural changes for on-chip power management and rapid development to energy efficient hardware accelerators. Accordingly, the objective of this research work is to facilitate software developers to leverage these hardware techniques and improve energy efficiency of the system. To achieve this, I propose two solutions for Linux kernel: Optimal use of these architectural enhancements to achieve greater energy efficiency requires accurate modeling of processor power consumption. Though there are many models available in literature …

Contributors
Desai, Digant, Vrudhula, Sarma, Chakrabarti, Chaitali, et al.
Created Date
2013

The availability of a wide range of general purpose as well as accelerator cores on modern smartphones means that a significant number of applications can be executed on a smartphone simultaneously, resulting in an ever increasing demand on the memory subsystem. While the increased computation capability is intended for improving user experience, memory requests from each concurrent application exhibit unique memory access patterns as well as specific timing constraints. If not considered, this could lead to significant memory contention and result in lowered user experience. This work first analyzes the impact of memory degradation caused by the interference at the …

Contributors
SHINGARI, DAVESH, Wu, Carole-Jean, Vrudhula, Sarma, et al.
Created Date
2016

User satisfaction is pivotal to the success of mobile applications. At the same time, it is imperative to maximize the energy efficiency of the mobile device to ensure optimal usage of the limited energy source available to mobile devices while maintaining the necessary levels of user satisfaction. However, this is complicated due to user interactions, numerous shared resources, and network conditions that produce substantial uncertainty to the mobile device's performance and power characteristics. In this dissertation, a new approach is presented to characterize and control mobile devices that accurately models these uncertainties. The proposed modeling framework is a completely data-driven …

Contributors
Gaudette, Benjamin David, Vrudhula, Sarma, Wu, Carole-Jean, et al.
Created Date
2017

Static CMOS logic has remained the dominant design style of digital systems for more than four decades due to its robustness and near zero standby current. Static CMOS logic circuits consist of a network of combinational logic cells and clocked sequential elements, such as latches and flip-flops that are used for sequencing computations over time. The majority of the digital design techniques to reduce power, area, and leakage over the past four decades have focused almost entirely on optimizing the combinational logic. This work explores alternate architectures for the flip-flops for improving the overall circuit performance, power and area. It …

Contributors
Yang, Jinghua, Vrudhula, Sarma, Barnaby, Hugh, et al.
Created Date
2018

The rapid improvement in computation capability has made deep convolutional neural networks (CNNs) a great success in recent years on many computer vision tasks with significantly improved accuracy. During the inference phase, many applications demand low latency processing of one image with strict power consumption requirement, which reduces the efficiency of GPU and other general-purpose platform, bringing opportunities for specific acceleration hardware, e.g. FPGA, by customizing the digital circuit specific for the deep learning algorithm inference. However, deploying CNNs on portable and embedded systems is still challenging due to large data volume, intensive computation, varying algorithm structures, and frequent memory …

Contributors
Ma, Yufei, Vrudhula, Sarma, Seo, Jae-sun, et al.
Created Date
2018