Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Date Range
2010 2018


Point of Load (PoL) converters are important components to the power distribution system in computer power supplies as well as automotive, space, nuclear, and medical electronics. These converters often require high output current capability, low form factor, and high conversion ratios (step-down) without sacrificing converter efficiency. This work presents hybrid silicon/gallium nitride (CMOS/GaN) power converter architectures as a solution for high-current, small form-factor PoL converters. The presented topologies use discrete GaN power devices and CMOS integrated drivers and controller loop. The presented power converters operate in the tens of MHz range to reduce the form factor by reducing the size ...

Contributors
Hegde, Ashwath, Kitchen, Jennifer, Bakkaloglu, Bertan, et al.
Created Date
2018

In this work, the development of a novel and a truly in-shoe force measurement system is reported. The device consists of a shoe insole with six thin film piezoresistive sensors and the main circuit board. The piezoresistive sensors are used for the measurement of plantar pressure during daily human activities. The motion sensor mounted on the main circuit board captures kinematic data. In addition, the main circuit board is responsible for the wireless transmission of the data from all the sensors in real-time using BLE protocol. It is housed within the midsole of the shoe, under the medial arch of ...

Contributors
Badarinath, Abhishek, Kiaei, Sayfe, Bakkaloglu, Bertan, et al.
Created Date
2018

Portable devices often require multiple power management IC (PMIC) to power different sub-modules, Li-ion batteries are well suited for portable devices because of its small size, high energy density and long life cycle. Since Li-ion battery is the major power source for portable device, fast and high-efficiency battery charging solution has become a major requirement in portable device application. In the first part of dissertation, a high performance Li-ion switching battery charger is proposed. Cascaded two loop (CTL) control architecture is used for seamless CC-CV transition, time based technique is utilized to minimize controller area and power consumption. Time domain ...

Contributors
Lim, Chai Yong, Kiaei, Sayfe, Bakkaloglu, Bertan, et al.
Created Date
2018

This work is concerned with the use of shielded loop antennas to measure permittivity as a low-cost alternative to expensive probe-based systems for biological tissues and surrogates. Beginning with the development of a model for simulation, the shielded loop was characterized. Following the simulations, the shielded loop was tested in free space and while holding a cup of water. The results were then compared. Because the physical measurements and the simulation results did not line up, simulation results were forgone. The shielded loop antenna was then used to measure a set of NaCl saline solutions with varying molarities. This measurement ...

Contributors
Yiin, Nathan, Aberle, James, Bakkaloglu, Bertan, et al.
Created Date
2018

The increase in computing power has simultaneously increased the demand for input/output (I/O) bandwidth. Unfortunately, the speed of I/O and memory interconnects have not kept pace. Thus, processor-based systems are I/O and interconnect limited. The memory aggregated bandwidth is not scaling fast enough to keep up with increasing bandwidth demands. The term "memory wall" has been coined to describe this phenomenon. A new memory bus concept that has the potential to push double data rate (DDR) memory speed to 30 Gbit/s is presented. We propose to map the conventional DDR bus to a microwave link using a multicarrier frequency division ...

Contributors
Bensalem, Brahim, Aberle, James T., Bakkaloglu, Bertan, et al.
Created Date
2018

Time-interleaved analog to digital converters (ADCs) have become critical components in high-speed communication systems. Consumers demands for smaller size, more bandwidth and more features from their communication systems have driven the market to use modern complementary metal-oxide-semiconductor (CMOS) technologies with shorter channel-length transistors and hence a more compact design. Downscaling the supply voltage which is required in submicron technologies benefits digital circuits in terms of power and area. Designing accurate analog circuits, however becomes more challenging due to the less headroom. One way to overcome this problem is to use calibration to compensate for the loss of accuracy in analog ...

Contributors
Nazari, Ali, Barnaby, Hugh James, Jalali-Farahani, Bahar, et al.
Created Date
2017

The market for high speed camera chips, or image sensors, has experienced rapid growth over the past decades owing to its broad application space in security, biomedical equipment, and mobile devices. CMOS (complementary metal-oxide-semiconductor) technology has significantly improved the performance of the high speed camera chip by enabling the monolithic integration of pixel circuits and on-chip analog-to-digital conversion. However, for low light intensity applications, many CMOS image sensors have a sub-optimum dynamic range, particularly in high speed operation. Thus the requirements for a sensor to have a high frame rate and high fill factor is attracting more attention. Another drawback ...

Contributors
Zhao, Tong, Barnaby, Hugh, Mikkola, Esko, et al.
Created Date
2017

Digital architectures for data encryption, processing, clock synthesis, data transfer, etc. are susceptible to radiation induced soft errors due to charge collection in complementary metal oxide semiconductor (CMOS) integrated circuits (ICs). Radiation hardening by design (RHBD) techniques such as double modular redundancy (DMR) and triple modular redundancy (TMR) are used for error detection and correction respectively in such architectures. Multiple node charge collection (MNCC) causes domain crossing errors (DCE) which can render the redundancy ineffectual. This dissertation describes techniques to ensure DCE mitigation with statistical confidence for various designs. Both sequential and combinatorial logic are separated using these custom and ...

Contributors
Ramamurthy, Chandarasekaran, Clark, Lawrence T, Allee, David, et al.
Created Date
2017

A Multi-input single inductor dual-output Boost based architecture for Multi-junction PV energy harvesting source is presented. The system works in Discontinuous Conduction Mode to achieve the independent input regulation for multi-junction PV source. A dual-output path is implemented to regulate the output at 3V as well as store the extra energy at light load condition. The dual-loop based sliding-mode MPPT for multi-junction PV is proposed to speed up the system response time for prompt irradiation change as well as maximize MPPT efficiency. The whole system achieves peak efficiency of 83% and MPPT efficiency of 95%. The whole system is designed, ...

Contributors
Geng, Yu, Kiaei, Sayfe, Bakkaloglu, Bertan, et al.
Created Date
2017

This thesis presents a power harvesting system combining energy from sub-cells of multi-junction photovoltaic (MJ-PV) cells. A dual-input, inductor time-sharing boost converter in continuous conduction mode (CCM) is proposed. A hysteresis inductor current regulation in designed to reduce cross regulation caused by inductor-sharing in CCM. A modified hill-climbing algorithm is implemented to achieve maximum power point tracking (MPPT). A dual-path architecture is implemented to provide a regulated 1.8V output. A proposed lossless current sensor monitors transient inductor current and a time-based power monitor is proposed to monitor PV power. The PV input provides power of 65mW. Measured results show that ...

Contributors
Peng, Qirong, Kiaei, Sayfe, Bakkaloglu, Bertan, et al.
Created Date
2017