Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Date Range
2011 2019


For systems having computers as a significant component, it becomes a critical task to identify the potential threats that the users of the system can present, while being both inside and outside the system. One of the most important factors that differentiate an insider from an outsider is the fact that the insider being a part of the system, owns privileges that enable him/her access to the resources and processes of the system through valid capabilities. An insider with malicious intent can potentially be more damaging compared to outsiders. The above differences help to understand the notion and scope of …

Contributors
Nolastname, Sharad, Bazzi, Rida, Sen, Arunabha, et al.
Created Date
2019

Due to large data resources generated by online educational applications, Educational Data Mining (EDM) has improved learning effects in different ways: Students Visualization, Recommendations for students, Students Modeling, Grouping Students, etc. A lot of programming assignments have the features like automating submissions, examining the test cases to verify the correctness, but limited studies compared different statistical techniques with latest frameworks, and interpreted models in a unified approach. In this thesis, several data mining algorithms have been applied to analyze students’ code assignment submission data from a real classroom study. The goal of this work is to explore and predict students’ …

Contributors
Tian, Wenbo, Hsiao, Ihan, Bazzi, Rida, et al.
Created Date
2019

Machine learning (ML) and deep neural networks (DNNs) have achieved great success in a variety of application domains, however, despite significant effort to make these networks robust, they remain vulnerable to adversarial attacks in which input that is perceptually indistinguishable from natural data can be erroneously classified with high prediction confidence. Works on defending against adversarial examples can be broadly classified as correcting or detecting, which aim, respectively at negating the effects of the attack and correctly classifying the input, or detecting and rejecting the input as adversarial. In this work, a new approach for detecting adversarial examples is proposed. …

Contributors
Sun, Lin, Bazzi, Rida, Li, Baoxin, et al.
Created Date
2019

Distributed systems are prone to attacks, called Sybil attacks, wherein an adversary may generate an unbounded number of bogus identities to gain control over the system. In this thesis, an algorithm, DownhillFlow, for mitigating such attacks is presented and tested experimentally. The trust rankings produced by the algorithm are significantly better than those of the distributed SybilGuard protocol and only slightly worse than those of the best-known Sybil defense algorithm, ACL. The results obtained for ACL are consistent with those obtained in previous studies. The running times of the algorithms are also tested and two results are obtained: first, DownhillFlow’s …

Contributors
Bradley, Michael, Bazzi, Rida, Richa, Andrea, et al.
Created Date
2018

Data from a total of 282 online web applications was collected, and accounts for 230 of those web applications were created in order to gather data about authentication practices, multistep authentication practices, security question practices, fallback authentication practices, and other security practices for online accounts. The account creation and data collection was done between June 2016 and April 2017. The password strengths for online accounts were analyzed and password strength data was compared to existing data. Security questions used by online accounts were evaluated for security and usability, and fallback authentication practices were assessed based on their adherence to best …

Contributors
Gutierrez, Garrett, Bazzi, Rida, Ahn, Gail-Joon, et al.
Created Date
2017

Scientific workflows allow scientists to easily model and express the entire data processing steps, typically as a directed acyclic graph (DAG). These scientific workflows are made of a collection of tasks that usually take a long time to compute and that produce a considerable amount of intermediate datasets. Because of the nature of scientific exploration, a scientific workflow can be modified and re-run multiple times, or new scientific workflows are created that might make use of past intermediate datasets. Storing intermediate datasets has the potential to save time in computations. Since storage is limited, one main problem that needs a …

Contributors
de Armas, Jadiel, Bazzi, Rida, Huang, Dijiang, et al.
Created Date
2017

Phishing is a form of online fraud where a spoofed website tries to gain access to user's sensitive information by tricking the user into believing that it is a benign website. There are several solutions to detect phishing attacks such as educating users, using blacklists or extracting phishing characteristics found to exist in phishing attacks. In this thesis, we analyze approaches that extract features from phishing websites and train classification models with extracted feature set to classify phishing websites. We create an exhaustive list of all features used in these approaches and categorize them into 6 broader categories and 33 …

Contributors
Namasivayam, Bhuvana Lalitha, Bazzi, Rida, Zhao, Ziming, et al.
Created Date
2017

Several decades of transistor technology scaling has brought the threat of soft errors to modern embedded processors. Several techniques have been proposed to protect these systems from soft errors. However, their effectiveness in protecting the computation cannot be ascertained without accurate and quantitative estimation of system reliability. Vulnerability -- a metric that defines the probability of system-failure (reliability) through analytical models -- is the most effective mechanism for our current estimation and early design space exploration needs. Previous vulnerability estimation tools are based around the Sim-Alpha simulator which has been to shown to have several limitations. In this thesis, I …

Contributors
Tanikella, Srinivas Karthik, Shrivastava, Aviral, Bazzi, Rida, et al.
Created Date
2016

Knowledge representation and reasoning is a prominent subject of study within the field of artificial intelligence that is concerned with the symbolic representation of knowledge in such a way to facilitate automated reasoning about this knowledge. Often in real-world domains, it is necessary to perform defeasible reasoning when representing default behaviors of systems. Answer Set Programming is a widely-used knowledge representation framework that is well-suited for such reasoning tasks and has been successfully applied to practical domains due to efficient computation through grounding--a process that replaces variables with variable-free terms--and propositional solvers similar to SAT solvers. However, some domains provide …

Contributors
Bartholomew, Michael James, Lee, Joohyung, Bazzi, Rida, et al.
Created Date
2016

Robotic technology is advancing to the point where it will soon be feasible to deploy massive populations, or swarms, of low-cost autonomous robots to collectively perform tasks over large domains and time scales. Many of these tasks will require the robots to allocate themselves around the boundaries of regions or features of interest and achieve target objectives that derive from their resulting spatial configurations, such as forming a connected communication network or acquiring sensor data around the entire boundary. We refer to this spatial allocation problem as boundary coverage. Possible swarm tasks that will involve boundary coverage include cooperative load …

Contributors
Peruvemba Kumar, Ganesh, Berman, Spring M, Fainekos, Georgios, et al.
Created Date
2016