Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Subject
Date Range
2010 2020


Integrins are a family of αβ heterodimeric transmembrane receptors. As an important class of adhesion receptors, integrins mediate cell adhesion, migration, and transformation through bidirectional signaling across the plasma membrane. Among the 24 different types of integrins, which are notorious for their capacity to recognize multiple ligands, the leukocyte integrin αMβ2 (Mac-1) is the most promiscuous member. In contrast to other integrins, Mac1 is unique with respect to its preference for cationic ligands. In this thesis, a new Mac-1 cationic ligand named pleiotrophin (PTN) is uncovered. PTN is an important cytokine and growth factor. Its activities in mitogenesis and angiogenesis …

Contributors
Shen, Di, Wang, Xu, Van Horn, Wade, et al.
Created Date
2020

This thesis focuses on serial crystallography studies with X-ray free electron lasers (XFEL) with a special emphasis on data analysis to investigate important processes in bioenergy conversion and medicinal applications. First, the work on photosynthesis focuses on time-resolved femtosecond crystallography studies of Photosystem II (PSII). The structural-dynamic studies of the water splitting reaction centering on PSII is a current hot topic of interest in the field, the goal of which is to capture snapshots of the structural changes during the Kok cycle. This thesis presents results from time-resolved serial femtosecond (fs) crystallography experiments (TR-SFX) where data sets are collected at …

Contributors
Ketawala, Gihan Kaushyal, Fromme, Petra, Liu, Wei, et al.
Created Date
2020

The small mitogenic cytokine Pleiotrophin (PTN) is well-known for its roles in tissue growth, development, and repair. First isolated from neuronal tissues, much interest in this protein resides in development of the central nervous system and neuronal regeneration. Owning to its role in growth, development and its ability to promote angiogenesis and metastasis, PTN’s overexpression in cancers such as glioblastoma, has become the focal point of much research. Many of the receptors through which PTN acts contain glycosaminoglycans (GAGs), through which PTN binds. Thus, understanding the atomistic detail of PTN’s architecture and interaction with GAG chains is of significant importance …

Contributors
Ryan, Eathen, Wang, Xu, Yarger, Jeffery, et al.
Created Date
2020

Eosinophils are innate immune cells that are most commonly associated with parasite infection and allergic responses. Recent studies, though, have identified eosinophils as cells with diverse effector functions at baseline and in disease. Eosinophils in specific tissue immune environments are proposed to promote unique and specific effector functions, suggesting these cells have the capacity to differentiate into unique subtypes. The studies here focus on defining these subtypes using functional, molecular, and genetic analysis as well as using novel techniques to image these subtypes in situ. To characterized these subtypes, an in vitro cytokine induced type 1 (E1) and type 2 …

Contributors
NAZAROFF, CHRISTOPHER D., Guo, Jia, Rank, Matthew A, et al.
Created Date
2020

Proteins are a large collection of biomolecules that orchestrate the vital cellular processes of life. The last decade has witnessed dramatic advances in the field of proteomics, which broadly include characterizing the composition, structure, functions, interactions, and modifications of numerous proteins in biological systems, and elucidating how the miscellaneous components collectively contribute to the phenotypes associated with various disorders. Such large-scale proteomics studies have steadily gained momentum with the evolution of diverse high-throughput technologies. This work illustrates the development of novel high-throughput proteomics platforms and their applications in translational and structural biology. In Chapter 1, nucleic acid programmable protein arrays …

Contributors
Tang, Yanyang, LaBaer, Joshua, Anderson, Karen S, et al.
Created Date
2020

Glycosaminoglycans (GAGs) are long chains of negatively charged sulfated polysaccharides. They are often found to be covalently attached to proteins and form proteoglycans in the extracellular matrix (ECM). Many proteins bind GAGs through electrostatic interactions. GAG-binding proteins (GBPs) are involved in diverse physiological activities ranging from bacterial infections to cell-cell/cell-ECM contacts. This thesis is devoted to understanding how interactions between GBPs and their receptors modulate biological phenomena. Bacteria express GBPs on surface that facilitate dissemination and colonization by attaching to host ECM. The first GBP investigated in this thesis is decorin binding protein (DBP) found on the surface of Borrelia …

Contributors
Feng, Wei, Wang, Xu, Yarger, Jeff L, et al.
Created Date
2019

Quiescin sulfhydryl oxidase 1 (QSOX1) is an enzyme that catalyzes disulfide bond formation by oxidizing two free sulfhydryl groups. QSOX1 consists of a thioredoxin (Trx) and an ERV (essential for respiration and viability)/ALR (augmenter of liver regeneration) domain which each contain CxxC motifs that work to bind to substrates and shuttle electrons to a flavin adenine dinucleotide (FAD) cofactor that accepts the electrons and reduces molecular oxygen to hydrogen peroxide. Investigation of the role of QSOX1 in cancer progression started when it was found at higher abundance in pancreatic ductal adenocarcinoma (PDA) patient plasma compared to healthy normal donor plasma. …

Contributors
Koelbel, Calvin, Lake, Douglas, Chen, Qiang "Shawn", et al.
Created Date
2019

In my thesis, I characterize multi-nuclear manganese cofactors in modified reaction centers from the bacterium Rhodobacter sphaeroides. I characterized interactions between a variety of secondary electron donors and modified reaction centers. In Chapter 1, I provide the research aims, background, and a summary of the chapters in my thesis. In Chapter 2 and Chapter 3, I present my work with artificial four-helix bundles as secondary electron donors to modified bacterial reaction centers. In Chapter 2, I characterize the binding and energetics of the P1 Mn-protein, as a secondary electron donor to modified reaction centers. In Chapter 3, I present the …

Contributors
Espiritu, Eduardo, Allen, James P, Jones, Anne K, et al.
Created Date
2019

The highly predictable structural and thermodynamic behavior of deoxynucleic acid (DNA) and ribonucleic acid (RNA) have made them versatile tools for creating artificial nanostructures over broad range. Moreover, DNA and RNA are able to interact with biological ligand as either synthetic aptamers or natural components, conferring direct biological functions to the nucleic acid devices. The applications of nucleic acids greatly relies on the bio-reactivity and specificity when applied to highly complexed biological systems. This dissertation aims to 1) develop new strategy to identify high affinity nucleic acid aptamers against biological ligand; and 2) explore highly orthogonal RNA riboregulators in vivo …

Contributors
Zhou, Yu, Yan, Hao, Green, Alexander, et al.
Created Date
2019

Microscopic algae have been investigated extensively by researchers for decades for their ability to bioremediate wastewater and flue gas while producing valuable biomass for use as feed, fuel, fertilizer, nutraceutical, and other specialty products. Reports of the exciting commercial potential of this diverse group of organisms started appearing in the literature as early as the 1940’s. However, nearly 80 years later, relatively few successful commercial microalgae installations exist and algae have not yet reached agricultural commodity status. This dissertation examines three major bottlenecks to commercial microalgae production including lack of an efficient and economical cultivation strategy, poor management of volatile …

Contributors
Wray, Joshua, Dempster, Thomas, Roberson, Robert, et al.
Created Date
2019