Skip to main content

ASU Electronic Theses and Dissertations

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at

The purpose of this research is to efficiently analyze certain data provided and to see if a useful trend can be observed as a result. This trend can be used to analyze certain probabilities. There are three main pieces of data which are being analyzed in this research: The value for δ of the call and put option, the %B value of the stock, and the amount of time until expiration of the stock option. The %B value is the most important. The purpose of analyzing the data is to see the relationship between the variables and, given certain values, …

Reeves, Michael Thomas, Richa, Andrea, McCarville, Daniel, et al.
Created Date

In this paper, a literature review is presented on the application of Bayesian networks applied in system reliability analysis. It is shown that Bayesian networks have become a popular modeling framework for system reliability analysis due to the benefits that Bayesian networks have the capability and flexibility to model complex systems, update the probability according to evidences and give a straightforward and compact graphical representation. Research on approaches for Bayesian network learning and inference are summarized. Two groups of models with multistate nodes were developed for scenarios from constant to continuous time to apply and contrast Bayesian networks with classical …

Zhou, Duan, Pan, Rong, McCarville, Daniel, et al.
Created Date