Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Date Range
2011 2019


With the development of computer and sensing technology, rich datasets have become available in many fields such as health care, manufacturing, transportation, just to name a few. Also, data come from multiple heterogeneous sources or modalities. This is a common phenomenon in health care systems. While multi-modality data fusion is a promising research area, there are several special challenges in health care applications. (1) The integration of biological and statistical model is a big challenge; (2) It is commonplace that data from various modalities is not available for every patient due to cost, accessibility, and other reasons. This results in …

Contributors
Liu, Xiaonan, Li, Jing, Wu, Teresa, et al.
Created Date
2019

Image-based process monitoring has recently attracted increasing attention due to the advancement of the sensing technologies. However, existing process monitoring methods fail to fully utilize the spatial information of images due to their complex characteristics including the high dimensionality and complex spatial structures. Recent advancement of the unsupervised deep models such as a generative adversarial network (GAN) and generative adversarial autoencoder (AAE) has enabled to learn the complex spatial structures automatically. Inspired by this advancement, we propose an anomaly detection framework based on the AAE for unsupervised anomaly detection for images. AAE combines the power of GAN with the variational …

Contributors
YEH, HUAI-MING, Yan, Hao, Pan, Rong, et al.
Created Date
2019

Functional brain imaging experiments are widely conducted in many fields for study- ing the underlying brain activity in response to mental stimuli. For such experiments, it is crucial to select a good sequence of mental stimuli that allow researchers to collect informative data for making precise and valid statistical inferences at minimum cost. In contrast to most existing studies, the aim of this study is to obtain optimal designs for brain mapping technology with an ultra-high temporal resolution with respect to some common statistical optimality criteria. The first topic of this work is on finding optimal designs when the primary …

Contributors
Alghamdi, Reem, Kao, Ming-Hung, Fricks, John, et al.
Created Date
2019

Optimal design theory provides a general framework for the construction of experimental designs for categorical responses. For a binary response, where the possible result is one of two outcomes, the logistic regression model is widely used to relate a set of experimental factors with the probability of a positive (or negative) outcome. This research investigates and proposes alternative designs to alleviate the problem of separation in small-sample D-optimal designs for the logistic regression model. Separation causes the non-existence of maximum likelihood parameter estimates and presents a serious problem for model fitting purposes. First, it is shown that exact, multi-factor D-optimal …

Contributors
Park, Anson Robert, Montgomery, Douglas C, Mancenido, Michelle V, et al.
Created Date
2019

One of the premier technologies for studying human brain functions is the event-related functional magnetic resonance imaging (fMRI). The main design issue for such experiments is to find the optimal sequence for mental stimuli. This optimal design sequence allows for collecting informative data to make precise statistical inferences about the inner workings of the brain. Unfortunately, this is not an easy task, especially when the error correlation of the response is unknown at the design stage. In the literature, the maximin approach was proposed to tackle this problem. However, this is an expensive and time-consuming method, especially when the correlated …

Contributors
Alrumayh, Amani, Kao, Ming-Hung, Stufken, John, et al.
Created Date
2019

Under different environmental conditions, the relationship between the design and operational variables of a system and the system’s performance is likely to vary and is difficult to be described by a single model. The environmental variables (e.g., temperature, humidity) are not controllable while the variables of the system (e.g. heating, cooling) are mostly controllable. This phenomenon has been widely seen in the areas of building energy management, mobile communication networks, and wind energy. To account for the complicated interaction between a system and the multivariate environment under which it operates, a Sparse Partitioned-Regression (SPR) model is proposed, which automatically searches …

Contributors
Ning, Shuluo, Li, Jing, Wu, Teresa, et al.
Created Date
2018

A quantitative analysis of a system that has a complex reliability structure always involves considerable challenges. This dissertation mainly addresses uncertainty in- herent in complicated reliability structures that may cause unexpected and undesired results. The reliability structure uncertainty cannot be handled by the traditional relia- bility analysis tools such as Fault Tree and Reliability Block Diagram due to their deterministic Boolean logic. Therefore, I employ Bayesian network that provides a flexible modeling method for building a multivariate distribution. By representing a system reliability structure as a joint distribution, the uncertainty and correlations existing between system’s elements can effectively be modeled …

Contributors
Lee, Dongjin, Pan, Rong, Montgomery, Douglas, et al.
Created Date
2018

Healthcare operations have enjoyed reduced costs, improved patient safety, and innovation in healthcare policy over a huge variety of applications by tackling prob- lems via the creation and optimization of descriptive mathematical models to guide decision-making. Despite these accomplishments, models are stylized representations of real-world applications, reliant on accurate estimations from historical data to jus- tify their underlying assumptions. To protect against unreliable estimations which can adversely affect the decisions generated from applications dependent on fully- realized models, techniques that are robust against misspecications are utilized while still making use of incoming data for learning. Hence, new robust techniques are …

Contributors
Bren, Austin, Saghafian, Soroush, Mirchandani, Pitu, et al.
Created Date
2018

In healthcare facilities, health information systems (HISs) are used to serve different purposes. The radiology department adopts multiple HISs in managing their operations and patient care. In general, the HISs that touch radiology fall into two categories: tracking HISs and archive HISs. Electronic Health Records (EHR) is a typical tracking HIS, which tracks the care each patient receives at multiple encounters and facilities. Archive HISs are typically specialized databases to store large-size data collected as part of the patient care. A typical example of an archive HIS is the Picture Archive and Communication System (PACS), which provides economical storage and …

Contributors
Wang, Kun, Li, Jing, Wu, Teresa, et al.
Created Date
2018

Project portfolio selection (PPS) is a significant problem faced by most organizations. How to best select the many innovative ideas that a company has developed to deploy in a proper and sustained manner with a balanced allocation of its resources over multiple time periods is one of vital importance to a company's goals. This dissertation details the steps involved in deploying a more intuitive portfolio selection framework that facilitates bringing analysts and management to a consensus on ongoing company efforts and buy into final decisions. A binary integer programming selection model that constructs an efficient frontier allows the evaluation of …

Contributors
Sampath, Siddhartha, Gel, Esma, Fowler, Jown W, et al.
Created Date
2018

The recent technological advances enable the collection of various complex, heterogeneous and high-dimensional data in biomedical domains. The increasing availability of the high-dimensional biomedical data creates the needs of new machine learning models for effective data analysis and knowledge discovery. This dissertation introduces several unsupervised and supervised methods to help understand the data, discover the patterns and improve the decision making. All the proposed methods can generalize to other industrial fields. The first topic of this dissertation focuses on the data clustering. Data clustering is often the first step for analyzing a dataset without the label information. Clustering high-dimensional data …

Contributors
Lin, Sangdi, Runger, George C, Kocher, Jean-Pierre A, et al.
Created Date
2018

The following is a case study composed of three workflow investigations at the open source software development (OSSD) based Apache Software Foundation (Apache). I start with an examination of the workload inequality within the Apache, particularly with regard to requirements writing. I established that the stronger a participant's experience indicators are, the more likely they are to propose a requirement that is not a defect and the more likely the requirement is eventually implemented. Requirements at Apache are divided into work tickets (tickets). In our second investigation, I reported many insights into the distribution patterns of these tickets. The participants …

Contributors
Panos, Ryan Charles, Collofello, James, Fowler, John, et al.
Created Date
2017

Distributed Renewable energy generators are now contributing a significant amount of energy into the energy grid. Consequently, reliability adequacy of such energy generators will depend on making accurate forecasts of energy produced by them. Power outputs of Solar PV systems depend on the stochastic variation of environmental factors (solar irradiance, ambient temperature & wind speed) and random mechanical failures/repairs. Monte Carlo Simulation which is typically used to model such problems becomes too computationally intensive leading to simplifying state-space assumptions. Multi-state models for power system reliability offer a higher flexibility in providing a description of system state evolution and an accurate …

Contributors
Kadloor, Nikhil, Kuitche, Joseph, Pan, Rong, et al.
Created Date
2017

This study concerns optimal designs for experiments where responses consist of both binary and continuous variables. Many experiments in engineering, medical studies, and other fields have such mixed responses. Although in recent decades several statistical methods have been developed for jointly modeling both types of response variables, an effective way to design such experiments remains unclear. To address this void, some useful results are developed to guide the selection of optimal experimental designs in such studies. The results are mainly built upon a powerful tool called the complete class approach and a nonlinear optimization algorithm. The complete class approach was …

Contributors
Kim, Soohyun, Kao, Ming-Hung, Dueck, Amylou, et al.
Created Date
2017

In accelerated life tests (ALTs), complete randomization is hardly achievable because of economic and engineering constraints. Typical experimental protocols such as subsampling or random blocks in ALTs result in a grouped structure, which leads to correlated lifetime observations. In this dissertation, generalized linear mixed model (GLMM) approach is proposed to analyze ALT data and find the optimal ALT design with the consideration of heterogeneous group effects. Two types of ALTs are demonstrated for data analysis. First, constant-stress ALT (CSALT) data with Weibull failure time distribution is modeled by GLMM. The marginal likelihood of observations is approximated by the quadrature rule; …

Contributors
Seo, Kangwon, Pan, Rong, Montgomery, Douglas C, et al.
Created Date
2017

One of the greatest 21st century challenges is meeting the needs of a growing world population expected to increase 35% by 2050 given projected trends in diets, consumption and income. This in turn requires a 70-100% improvement on current production capability, even as the world is undergoing systemic climate pattern changes. This growth not only translates to higher demand for staple products, such as rice, wheat, and beans, but also creates demand for high-value products such as fresh fruits and vegetables (FVs), fueled by better economic conditions and a more health conscious consumer. In this case, it would seem that …

Contributors
Flores, Hector M., Villalobos, Rene, Pan, Rong, et al.
Created Date
2017

Bayesian networks are powerful tools in system reliability assessment due to their flexibility in modeling the reliability structure of complex systems. This dissertation develops Bayesian network models for system reliability analysis through the use of Bayesian inference techniques. Bayesian networks generalize fault trees by allowing components and subsystems to be related by conditional probabilities instead of deterministic relationships; thus, they provide analytical advantages to the situation when the failure structure is not well understood, especially during the product design stage. In order to tackle this problem, one needs to utilize auxiliary information such as the reliability information from similar products …

Contributors
Yontay, Petek, Pan, Rong, Montgomery, Douglas C, et al.
Created Date
2016

This research is to address the design optimization of systems for a specified reliability level, considering the dynamic nature of component failure rates. In case of designing a mechanical system (especially a load-sharing system), the failure of one component will lead to increase in probability of failure of remaining components. Many engineering systems like aircrafts, automobiles, and construction bridges will experience this phenomenon. In order to design these systems, the Reliability-Based Design Optimization framework using Sequential Optimization and Reliability Assessment (SORA) method is developed. The dynamic nature of component failure probability is considered in the system reliability model. The Stress-Strength …

Contributors
Bala Subramaniyan, Arun, Pan, Rong, Askin, Ronald, et al.
Created Date
2016

Mixture experiments are useful when the interest is in determining how changes in the proportion of an experimental component affects the response. This research focuses on the modeling and design of mixture experiments when the response is categorical namely, binary and ordinal. Data from mixture experiments is characterized by the perfect collinearity of the experimental components, resulting in model matrices that are singular and inestimable under likelihood estimation procedures. To alleviate problems with estimation, this research proposes the reparameterization of two nonlinear models for ordinal data -- the proportional-odds model with a logistic link and the stereotype model. A study …

Contributors
Mancenido, Michelle V., Montgomery, Douglas C, Pan, Rong, et al.
Created Date
2016

Resource allocation in cloud computing determines the allocation of computer and network resources of service providers to service requests of cloud users for meeting the cloud users' service requirements. The efficient and effective resource allocation determines the success of cloud computing. However, it is challenging to satisfy objectives of all service providers and all cloud users in an unpredictable environment with dynamic workload, large shared resources and complex policies to manage them. Many studies propose to use centralized algorithms for achieving optimal solutions for resource allocation. However, the centralized algorithms may encounter the scalability problem to handle a large number …

Contributors
Yang, Su Seon, Ye, Nong, Wu, Teresa, et al.
Created Date
2016

The majority of research in experimental design has, to date, been focused on designs when there is only one type of response variable under consideration. In a decision-making process, however, relying on only one objective or criterion can lead to oversimplified, sub-optimal decisions that ignore important considerations. Incorporating multiple, and likely competing, objectives is critical during the decision-making process in order to balance the tradeoffs of all potential solutions. Consequently, the problem of constructing a design for an experiment when multiple types of responses are of interest does not have a clear answer, particularly when the response variables have different …

Contributors
Burke, Sarah Ellen, Montgomery, Douglas C, Borror, Connie M, et al.
Created Date
2016

Functional or dynamic responses are prevalent in experiments in the fields of engineering, medicine, and the sciences, but proposals for optimal designs are still sparse for this type of response. Experiments with dynamic responses result in multiple responses taken over a spectrum variable, so the design matrix for a dynamic response have more complicated structures. In the literature, the optimal design problem for some functional responses has been solved using genetic algorithm (GA) and approximate design methods. The goal of this dissertation is to develop fast computer algorithms for calculating exact D-optimal designs. First, we demonstrated how the traditional exchange …

Contributors
Saleh, Moein, Pan, Rong, Montgomery, Douglas C, et al.
Created Date
2015

Optimal experimental design for generalized linear models is often done using a pseudo-Bayesian approach that integrates the design criterion across a prior distribution on the parameter values. This approach ignores the lack of utility of certain models contained in the prior, and a case is demonstrated where the heavy focus on such hopeless models results in a design with poor performance and with wild swings in coverage probabilities for Wald-type confidence intervals. Design construction using a utility-based approach is shown to result in much more stable coverage probabilities in the area of greatest concern. The pseudo-Bayesian approach can be applied …

Contributors
Hassler, Edgar, Montgomery, Douglas C, Silvestrini, Rachel T, et al.
Created Date
2015

This thesis presents a successful application of operations research techniques in nonprofit distribution system to improve the distribution efficiency and increase customer service quality. It focuses on truck routing problems faced by St. Mary’s Food Bank Distribution Center. This problem is modeled as a capacitated vehicle routing problem to improve the distribution efficiency and is extended to capacitated vehicle routing problem with time windows to increase customer service quality. Several heuristics are applied to solve these vehicle routing problems and tested in well-known benchmark problems. Algorithms are tested by comparing the results with the plan currently used by St. Mary’s …

Contributors
Li, Xiaoyan, Askin, Ronald, Wu, Teresa, et al.
Created Date
2015

The complexity of supply chains (SC) has grown rapidly in recent years, resulting in an increased difficulty to evaluate and visualize performance. Consequently, analytical approaches to evaluate SC performance in near real time relative to targets and plans are important to detect and react to deviations in order to prevent major disruptions. Manufacturing anomalies, inaccurate forecasts, and other problems can lead to SC disruptions. Traditional monitoring methods are not sufficient in this respect, because com- plex SCs feature changes in manufacturing tasks (dynamic complexity) and carry a large number of stock keeping units (detail complexity). Problems are easily confounded with …

Contributors
Liu, Lei, Runger, George, Gel, Esma, et al.
Created Date
2015

In this paper, a literature review is presented on the application of Bayesian networks applied in system reliability analysis. It is shown that Bayesian networks have become a popular modeling framework for system reliability analysis due to the benefits that Bayesian networks have the capability and flexibility to model complex systems, update the probability according to evidences and give a straightforward and compact graphical representation. Research on approaches for Bayesian network learning and inference are summarized. Two groups of models with multistate nodes were developed for scenarios from constant to continuous time to apply and contrast Bayesian networks with classical …

Contributors
Zhou, Duan, Pan, Rong, McCarville, Daniel, et al.
Created Date
2014

In this era of fast computational machines and new optimization algorithms, there have been great advances in Experimental Designs. We focus our research on design issues in generalized linear models (GLMs) and functional magnetic resonance imaging(fMRI). The first part of our research is on tackling the challenging problem of constructing exact designs for GLMs, that are robust against parameter, link and model uncertainties by improving an existing algorithm and providing a new one, based on using a continuous particle swarm optimization (PSO) and spectral clustering. The proposed algorithm is sufficiently versatile to accomodate most popular design selection criteria, and we …

Contributors
Temkit, M'Hamed, Kao, Jason, Reiser, Mark, et al.
Created Date
2014

Accelerated life testing (ALT) is the process of subjecting a product to stress conditions (temperatures, voltage, pressure etc.) in excess of its normal operating levels to accelerate failures. Product failure typically results from multiple stresses acting on it simultaneously. Multi-stress factor ALTs are challenging as they increase the number of experiments due to the stress factor-level combinations resulting from the increased number of factors. Chapter 2 provides an approach for designing ALT plans with multiple stresses utilizing Latin hypercube designs that reduces the simulation cost without loss of statistical efficiency. A comparison to full grid and large-sample approximation methods illustrates …

Contributors
Nasir, Ehab Awad Mukhtar, Pan, Rong, Runger, George, et al.
Created Date
2014

In the three phases of the engineering design process (conceptual design, embodiment design and detailed design), traditional reliability information is scarce. However, there are different sources of information that provide reliability inputs while designing a new product. This research considered these sources to be further analyzed: reliability information from similar existing products denominated as parents, elicited experts' opinions, initial testing and the customer voice for creating design requirements. These sources were integrated with three novels approaches to produce reliability insights in the engineering design process, all under the Design for Reliability (DFR) philosophy. Firstly, an enhanced parenting process to assess …

Contributors
Mejia Sanchez, Luis, Pan, Rong, Montgomery, Douglas, et al.
Created Date
2014

The main objective of this research is to develop an approach to PV module lifetime prediction. In doing so, the aim is to move from empirical generalizations to a formal predictive science based on data-driven case studies of the crystalline silicon PV systems. The evaluation of PV systems aged 5 to 30 years old that results in systematic predictive capability that is absent today. The warranty period provided by the manufacturers typically range from 20 to 25 years for crystalline silicon modules. The end of lifetime (for example, the time-to-degrade by 20% from rated power) of PV modules is usually …

Contributors
Kuitche, Joseph Mathurin, Pan, Rong, TamizhMani, Govindasamy, et al.
Created Date
2014

This thesis presents a meta-analysis of lead-free solder reliability. The qualitative analyses of the failure modes of lead- free solder under different stress tests including drop test, bend test, thermal test and vibration test are discussed. The main cause of failure of lead- free solder is fatigue crack, and the speed of propagation of the initial crack could differ from different test conditions and different solder materials. A quantitative analysis about the fatigue behavior of SAC lead-free solder under thermal preconditioning process is conducted. This thesis presents a method of making prediction of failure life of solder alloy by building …

Contributors
Xu, Xinyue, Pan, Rong, Montgomery, Douglas, et al.
Created Date
2014

Technological advances have enabled the generation and collection of various data from complex systems, thus, creating ample opportunity to integrate knowledge in many decision making applications. This dissertation introduces holistic learning as the integration of a comprehensive set of relationships that are used towards the learning objective. The holistic view of the problem allows for richer learning from data and, thereby, improves decision making. The first topic of this dissertation is the prediction of several target attributes using a common set of predictor attributes. In a holistic learning approach, the relationships between target attributes are embedded into the learning algorithm …

Contributors
Azarnoush, Bahareh, Runger, George C, Bekki, Jennifer, et al.
Created Date
2014

No-confounding designs (NC) in 16 runs for 6, 7, and 8 factors are non-regular fractional factorial designs that have been suggested as attractive alternatives to the regular minimum aberration resolution IV designs because they do not completely confound any two-factor interactions with each other. These designs allow for potential estimation of main effects and a few two-factor interactions without the need for follow-up experimentation. Analysis methods for non-regular designs is an area of ongoing research, because standard variable selection techniques such as stepwise regression may not always be the best approach. The current work investigates the use of the Dantzig …

Contributors
Krishnamoorthy, Archana, Montgomery, Douglas C, Borror, Connie, et al.
Created Date
2014

Identifying important variation patterns is a key step to identifying root causes of process variability. This gives rise to a number of challenges. First, the variation patterns might be non-linear in the measured variables, while the existing research literature has focused on linear relationships. Second, it is important to remove noise from the dataset in order to visualize the true nature of the underlying patterns. Third, in addition to visualizing the pattern (preimage), it is also essential to understand the relevant features that define the process variation pattern. This dissertation considers these variation challenges. A base kernel principal component analysis …

Contributors
Sahu, Anshuman, Runger, George C., Wu, Teresa, et al.
Created Date
2013

Nowadays product reliability becomes the top concern of the manufacturers and customers always prefer the products with good performances under long period. In order to estimate the lifetime of the product, accelerated life testing (ALT) is introduced because most of the products can last years even decades. Much research has been done in the ALT area and optimal design for ALT is a major topic. This dissertation consists of three main studies. First, a methodology of finding optimal design for ALT with right censoring and interval censoring have been developed and it employs the proportional hazard (PH) model and generalized …

Contributors
Yang, Tao, Pan, Rong, Montgomery, Douglas, et al.
Created Date
2013

With the increase in computing power and availability of data, there has never been a greater need to understand data and make decisions from it. Traditional statistical techniques may not be adequate to handle the size of today's data or the complexities of the information hidden within the data. Thus knowledge discovery by machine learning techniques is necessary if we want to better understand information from data. In this dissertation, we explore the topics of asymmetric loss and asymmetric data in machine learning and propose new algorithms as solutions to some of the problems in these topics. We also studied …

Contributors
Koh, Derek, Runger, George, Wu, Tong, et al.
Created Date
2013

With the rapid development of mobile sensing technologies like GPS, RFID, sensors in smartphones, etc., capturing position data in the form of trajectories has become easy. Moving object trajectory analysis is a growing area of interest these days owing to its applications in various domains such as marketing, security, traffic monitoring and management, etc. To better understand movement behaviors from the raw mobility data, this doctoral work provides analytic models for analyzing trajectory data. As a first contribution, a model is developed to detect changes in trajectories with time. If the taxis moving in a city are viewed as sensors …

Contributors
Kondaveeti, Anirudh, Runger, George, Mirchandani, Pitu, et al.
Created Date
2012

Temporal data are increasingly prevalent and important in analytics. Time series (TS) data are chronological sequences of observations and an important class of temporal data. Fields such as medicine, finance, learning science and multimedia naturally generate TS data. Each series provide a high-dimensional data vector that challenges the learning of the relevant patterns This dissertation proposes TS representations and methods for supervised TS analysis. The approaches combine new representations that handle translations and dilations of patterns with bag-of-features strategies and tree-based ensemble learning. This provides flexibility in handling time-warped patterns in a computationally efficient way. The ensemble learners provide a …

Contributors
Baydogan, Mustafa Gokce, Runger, George C, Atkinson, Robert, et al.
Created Date
2012

This dissertation presents methods for the evaluation of ocular surface protection during natural blink function. The evaluation of ocular surface protection is especially important in the diagnosis of dry eye and the evaluation of dry eye severity in clinical trials. Dry eye is a highly prevalent disease affecting vast numbers (between 11% and 22%) of an aging population. There is only one approved therapy with limited efficacy, which results in a huge unmet need. The reason so few drugs have reached approval is a lack of a recognized therapeutic pathway with reproducible endpoints. While the interplay between blink function and …

Contributors
Abelson, Richard Barrett, Montgomery, Douglas, Borror, Connie, et al.
Created Date
2012

This dissertation is to address product design optimization including reliability-based design optimization (RBDO) and robust design with epistemic uncertainty. It is divided into four major components as outlined below. Firstly, a comprehensive study of uncertainties is performed, in which sources of uncertainty are listed, categorized and the impacts are discussed. Epistemic uncertainty is of interest, which is due to lack of knowledge and can be reduced by taking more observations. In particular, the strategies to address epistemic uncertainties due to implicit constraint function are discussed. Secondly, a sequential sampling strategy to improve RBDO under implicit constraint function is developed. In …

Contributors
Zhuang, Xiaotian, Pan, Rong, Montgomery, Douglas C, et al.
Created Date
2012

This dissertation presents methods for addressing research problems that currently can only adequately be solved using Quality Reliability Engineering (QRE) approaches especially accelerated life testing (ALT) of electronic printed wiring boards with applications to avionics circuit boards. The methods presented in this research are generally applicable to circuit boards, but the data generated and their analysis is for high performance avionics. Avionics equipment typically requires 20 years expected life by aircraft equipment manufacturers and therefore ALT is the only practical way of performing life test estimates. Both thermal and vibration ALT induced failure are performed and analyzed to resolve industry …

Contributors
Juarez, Joseph Moses, Montgomery, Douglas C., Borror, Connie M., et al.
Created Date
2012

In recent years, service oriented computing (SOC) has become a widely accepted paradigm for the development of distributed applications such as web services, grid computing and cloud computing systems. In service-based systems (SBS), multiple service requests with specific performance requirements make services compete for system resources. IT service providers need to allocate resources to services so the performance requirements of customers can be satisfied. Workload and performance models are required for efficient resource management and service performance assurance in SBS. This dissertation develops two methods to understand and model the cause-effect relations of service-related activities with resources workload and service …

Contributors
Martinez Aranda, Billibaldo Iram, Ye, Nong, Wu, Tong, et al.
Created Date
2012

A good production schedule in a semiconductor back-end facility is critical for the on time delivery of customer orders. Compared to the front-end process that is dominated by re-entrant product flows, the back-end process is linear and therefore more suitable for scheduling. However, the production scheduling of the back-end process is still very difficult due to the wide product mix, large number of parallel machines, product family related setups, machine-product qualification, and weekly demand consisting of thousands of lots. In this research, a novel mixed-integer-linear-programming (MILP) model is proposed for the batch production scheduling of a semiconductor back-end facility. In …

Contributors
Fu, Mengying, Askin, Ronald G, Zhang, Muhong, et al.
Created Date
2011

This dissertation transforms a set of system complexity reduction problems to feature selection problems. Three systems are considered: classification based on association rules, network structure learning, and time series classification. Furthermore, two variable importance measures are proposed to reduce the feature selection bias in tree models. Associative classifiers can achieve high accuracy, but the combination of many rules is difficult to interpret. Rule condition subset selection (RCSS) methods for associative classification are considered. RCSS aims to prune the rule conditions into a subset via feature selection. The subset then can be summarized into rule-based classifiers. Experiments show that classifiers after …

Contributors
Deng, Houtao, Runger, George C, Lohr, Sharon L, et al.
Created Date
2011

Hydropower generation is one of the clean renewable energies which has received great attention in the power industry. Hydropower has been the leading source of renewable energy. It provides more than 86% of all electricity generated by renewable sources worldwide. Generally, the life span of a hydropower plant is considered as 30 to 50 years. Power plants over 30 years old usually conduct a feasibility study of rehabilitation on their entire facilities including infrastructure. By age 35, the forced outage rate increases by 10 percentage points compared to the previous year. Much longer outages occur in power plants older than …

Contributors
Kwon, Ogeuk, Holbert, Keith E, Heydt, Gerald T, et al.
Created Date
2011

Yield is a key process performance characteristic in the capital-intensive semiconductor fabrication process. In an industry where machines cost millions of dollars and cycle times are a number of months, predicting and optimizing yield are critical to process improvement, customer satisfaction, and financial success. Semiconductor yield modeling is essential to identifying processing issues, improving quality, and meeting customer demand in the industry. However, the complicated fabrication process, the massive amount of data collected, and the number of models available make yield modeling a complex and challenging task. This work presents modeling strategies to forecast yield using generalized linear models (GLMs) …

Contributors
Krueger, Dana Cheree, Montgomery, Douglas C., Fowler, John, et al.
Created Date
2011