Skip to main content

ASU Electronic Theses and Dissertations

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at

The immune system plays a dual role during neoplastic progression. It can suppress tumor growth by eliminating cancer cells, and also promote neoplastic expansion by either selecting for tumor cells that are fitter to survive in an immunocompetent host or by establishing the right conditions within the tumor microenvironment. First, I present a model to study the dynamics of subclonal evolution of cancer. I model selection through time as an epistatic process. That is, the fitness change in a given cell is not simply additive, but depends on previous mutations. Simulation studies indicate that tumors are composed of myriads of …

Chowell, Diego, Castillo-Chavez, Carlos, Anderson, Karen S, et al.
Created Date

The NLR family, pyrin domain-containing 3 (NLRP3) inflammasome is essential for the innate immune response to danger signals. Importantly, the NLRP3 inflammasome responds to structurally and functionally dissimilar stimuli. It is currently unknown how the NLRP3 inflammasome responds to such diverse triggers. This dissertation investigates the role of ion flux in regulating the NLRP3 inflammasome. Project 1 explores the relationship between potassium efflux and Syk tyrosine kinase. The results reveal that Syk activity is upstream of mitochondrial oxidative signaling and is crucial for inflammasome assembly, pro-inflammatory cytokine processing, and caspase-1-dependent pyroptotic cell death. Dynamic potassium imaging and molecular analysis revealed …

Yaron, Jordan Robin, Meldrum, Deirdre R, Blattman, Joseph N, et al.
Created Date