Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Transgenic experiments in Drosophila have proven to be a useful tool aiding in the determination of mammalian protein function. A CNS specific protein, dCORL is a member of the Sno/Ski family. Sno acts as a switch between Dpp/dActivin signaling. dCORL is involved in Dpp and dActivin signaling, but the two homologous mCORL protein functions are unknown. Conducting transgenic experiments in the adult wings, and third instar larval brains using mCORL1, mCORL2 and dCORL are used to provide insight into the function of these proteins. These experiments show mCORL1 has a different function from mCORL2 and dCORL when expressed in Drosophila. …

Contributors
Stinchfield, Michael J, Newfeld, Stuart J, Capco, David, et al.
Created Date
2019

Drosophila CORL (dCORL) is a central nervous system (CNS)-specific gene that is hypothesized to function in Transforming Growth Factor β signaling. It is part of the Corl multigene family that includes mouse and human homologs. dCORL is necessary for Ecdysone Receptor isoform B1 (EcR-B1) protein expression in the mushroom body, a brain region responsible for learning and memory. Beyond this, dCORL function is unknown. As dCORL expression is restricted to the CNS, co-expression experiments were performed to identify dCORL-specific neurons. In these experiments, EcR-B1 protein expression was compared to dCORL mRNA expression revealing that they are not expressed in the …

Contributors
Tran, Nancy Lan, Newfeld, Stuart J, Capco, David G, et al.
Created Date
2018

Proper cell growth and differentiation requires the integration of multiple signaling pathways that are maintained by various post-translational modifications. Many proteins in signal transduction pathways are conserved between humans and model organisms. My dissertation characterizes four previously unknown manners of regulation in the Drosophila Decapentaplegic (Dpp) pathway, a pathway within TGF-beta family. First, I present data that the Dpp signal transducer, Mothers Against Dpp (Mad), is phosphorylated by Zeste-white 3 (Zw3), a kinase involved in the Wingless pathway. This phosphorylation event occurs independently of canonical phosphorylation of Mad by the Dpp receptor. Using ectopic expression of different alleles of Mad, …

Contributors
Quijano, Janine Clare, Newfeld, Stuart J, Goldstein, Elliott, et al.
Created Date
2014