Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Subject
Date Range
2010 2019


In this work, I present a Bayesian inference computational framework for the analysis of widefield microscopy data that addresses three challenges: (1) counting and localizing stationary fluorescent molecules; (2) inferring a spatially-dependent effective fluorescence profile that describes the spatially-varying rate at which fluorescent molecules emit subsequently-detected photons (due to different illumination intensities or different local environments); and (3) inferring the camera gain. My general theoretical framework utilizes the Bayesian nonparametric Gaussian and beta-Bernoulli processes with a Markov chain Monte Carlo sampling scheme, which I further specify and implement for Total Internal Reflection Fluorescence (TIRF) microscopy data, benchmarking the method on …

Contributors
Wallgren, Ross Tod, Presse, Steve, Armbruster, Hans, et al.
Created Date
2019

The concept of distribution is one of the core ideas of probability theory and inferential statistics, if not the core idea. Many introductory statistics textbooks pay lip service to stochastic/random processes but how do students think about these processes? This study sought to explore what understandings of stochastic process students develop as they work through materials intended to support them in constructing the long-run behavior meaning for distribution. I collected data in three phases. First, I conducted a set of task-based clinical interviews that allowed me to build initial models for the students’ meanings for randomness and probability. Second, I …

Contributors
Hatfield, Neil, Thompson, Patrick, Carlson, Marilyn, et al.
Created Date
2019

Bayesian Additive Regression Trees (BART) is a non-parametric Bayesian model that often outperforms other popular predictive models in terms of out-of-sample error. This thesis studies a modified version of BART called Accelerated Bayesian Additive Regression Trees (XBART). The study consists of simulation and real data experiments comparing XBART to other leading algorithms, including BART. The results show that XBART maintains BART’s predictive power while reducing its computation time. The thesis also describes the development of a Python package implementing XBART. Dissertation/Thesis

Contributors
Yalov, Saar, Hahn, P. Richard, McCulloch, Robert, et al.
Created Date
2019

Due to large data resources generated by online educational applications, Educational Data Mining (EDM) has improved learning effects in different ways: Students Visualization, Recommendations for students, Students Modeling, Grouping Students, etc. A lot of programming assignments have the features like automating submissions, examining the test cases to verify the correctness, but limited studies compared different statistical techniques with latest frameworks, and interpreted models in a unified approach. In this thesis, several data mining algorithms have been applied to analyze students’ code assignment submission data from a real classroom study. The goal of this work is to explore and predict students’ …

Contributors
Tian, Wenbo, Hsiao, Ihan, Bazzi, Rida, et al.
Created Date
2019

A simulation study was conducted to explore the robustness of general factor mean difference estimation in bifactor ordered-categorical data. In the No Differential Item Functioning (DIF) conditions, the data generation conditions varied were sample size, the number of categories per item, effect size of the general factor mean difference, and the size of specific factor loadings; in data analysis, misspecification conditions were introduced in which the generated bifactor data were fit using a unidimensional model, and/or ordered-categorical data were treated as continuous data. In the DIF conditions, the data generation conditions varied were sample size, the number of categories per …

Contributors
Liu, Yixing, Thompson, Marilyn, Levy, Roy, et al.
Created Date
2019

This thesis presents a family of adaptive curvature methods for gradient-based stochastic optimization. In particular, a general algorithmic framework is introduced along with a practical implementation that yields an efficient, adaptive curvature gradient descent algorithm. To this end, a theoretical and practical link between curvature matrix estimation and shrinkage methods for covariance matrices is established. The use of shrinkage improves estimation accuracy of the curvature matrix when data samples are scarce. This thesis also introduce several insights that result in data- and computation-efficient update equations. Empirical results suggest that the proposed method compares favorably with existing second-order techniques based on …

Contributors
Barron, Trevor Paul, Ben Amor, Heni, He, Jingrui, et al.
Created Date
2019

Functional brain imaging experiments are widely conducted in many fields for study- ing the underlying brain activity in response to mental stimuli. For such experiments, it is crucial to select a good sequence of mental stimuli that allow researchers to collect informative data for making precise and valid statistical inferences at minimum cost. In contrast to most existing studies, the aim of this study is to obtain optimal designs for brain mapping technology with an ultra-high temporal resolution with respect to some common statistical optimality criteria. The first topic of this work is on finding optimal designs when the primary …

Contributors
Alghamdi, Reem, Kao, Ming-Hung, Fricks, John, et al.
Created Date
2019

Optimal design theory provides a general framework for the construction of experimental designs for categorical responses. For a binary response, where the possible result is one of two outcomes, the logistic regression model is widely used to relate a set of experimental factors with the probability of a positive (or negative) outcome. This research investigates and proposes alternative designs to alleviate the problem of separation in small-sample D-optimal designs for the logistic regression model. Separation causes the non-existence of maximum likelihood parameter estimates and presents a serious problem for model fitting purposes. First, it is shown that exact, multi-factor D-optimal …

Contributors
Park, Anson Robert, Montgomery, Douglas C, Mancenido, Michelle V, et al.
Created Date
2019

The problem of multiple object tracking seeks to jointly estimate the time-varying cardinality and trajectory of each object. There are numerous challenges that are encountered in tracking multiple objects including a time-varying number of measurements, under varying constraints, and environmental conditions. In this thesis, the proposed statistical methods integrate the use of physical-based models with Bayesian nonparametric methods to address the main challenges in a tracking problem. In particular, Bayesian nonparametric methods are exploited to efficiently and robustly infer object identity and learn time-dependent cardinality; together with Bayesian inference methods, they are also used to associate measurements to objects and …

Contributors
Moraffah, Bahman, Papandreou-Suppappola, Antonia, Bliss, Daniel W., et al.
Created Date
2019

Network analysis is a key conceptual orientation and analytical tool in the social sciences that emphasizes the embeddedness of individual behavior within a larger web of social relations. The network approach is used to better understand the cause and consequence of social interactions which cannot be treated as independent. The relational nature of network data and models, however, amplify the methodological concerns associated with inaccurate or missing data. This dissertation addresses such concerns via three projects. As a motivating substantive example, Project 1 examines factors associated with the selection of interaction partners by students at a large urban high school …

Contributors
Bates, Jordan Taylor, Maroulis, Spiro J, Kang, Yun, et al.
Created Date
2019

Eigenvalues of the Gram matrix formed from received data frequently appear in sufficient detection statistics for multi-channel detection with Generalized Likelihood Ratio (GLRT) and Bayesian tests. In a frequently presented model for passive radar, in which the null hypothesis is that the channels are independent and contain only complex white Gaussian noise and the alternative hypothesis is that the channels contain a common rank-one signal in the mean, the GLRT statistic is the largest eigenvalue $\lambda_1$ of the Gram matrix formed from data. This Gram matrix has a Wishart distribution. Although exact expressions for the distribution of $\lambda_1$ are known …

Contributors
Jones, Scott, Cochran, Douglas, Berisha, Visar, et al.
Created Date
2019

One of the premier technologies for studying human brain functions is the event-related functional magnetic resonance imaging (fMRI). The main design issue for such experiments is to find the optimal sequence for mental stimuli. This optimal design sequence allows for collecting informative data to make precise statistical inferences about the inner workings of the brain. Unfortunately, this is not an easy task, especially when the error correlation of the response is unknown at the design stage. In the literature, the maximin approach was proposed to tackle this problem. However, this is an expensive and time-consuming method, especially when the correlated …

Contributors
Alrumayh, Amani, Kao, Ming-Hung, Stufken, John, et al.
Created Date
2019

Understanding how adherence affects outcomes is crucial when developing and assigning interventions. However, interventions are often evaluated by conducting randomized experiments and estimating intent-to-treat effects, which ignore actual treatment received. Dose-response effects can supplement intent-to-treat effects when participants are offered the full dose but many only receive a partial dose due to nonadherence. Using these data, we can estimate the magnitude of the treatment effect at different levels of adherence, which serve as a proxy for different levels of treatment. In this dissertation, I conducted Monte Carlo simulations to evaluate when linear dose-response effects can be accurately and precisely estimated …

Contributors
Mazza, Gina Lynn, Grimm, Kevin J, West, Stephen G, et al.
Created Date
2018

Traditional usability methods in Human-Computer Interaction (HCI) have been extensively used to understand the usability of products. Measurements of user experience (UX) in traditional HCI studies mostly rely on task performance and observable user interactions with the product or services, such as usability tests, contextual inquiry, and subjective self-report data, including questionnaires, interviews, and usability tests. However, these studies fail to directly reflect a user’s psychological involvement and further fail to explain the cognitive processing and the related emotional arousal. Thus, capturing how users think and feel when they are using a product remains a vital challenge of user experience …

Contributors
Kula, Irfan, Atkinson, Robert K, Roscoe, Rod D, et al.
Created Date
2018

Generalized Linear Models (GLMs) are widely used for modeling responses with non-normal error distributions. When the values of the covariates in such models are controllable, finding an optimal (or at least efficient) design could greatly facilitate the work of collecting and analyzing data. In fact, many theoretical results are obtained on a case-by-case basis, while in other situations, researchers also rely heavily on computational tools for design selection. Three topics are investigated in this dissertation with each one focusing on one type of GLMs. Topic I considers GLMs with factorial effects and one continuous covariate. Factors can have interactions among …

Contributors
Wang, Zhongshen, Stufken, John, Kamarianakis, Ioannis, et al.
Created Date
2018

The Pearson and likelihood ratio statistics are well-known in goodness-of-fit testing and are commonly used for models applied to multinomial count data. When data are from a table formed by the cross-classification of a large number of variables, these goodness-of-fit statistics may have lower power and inaccurate Type I error rate due to sparseness. Pearson's statistic can be decomposed into orthogonal components associated with the marginal distributions of observed variables, and an omnibus fit statistic can be obtained as a sum of these components. When the statistic is a sum of components for lower-order marginals, it has good performance for …

Contributors
Dassanayake, Mudiyanselage Maduranga Kasun, Reiser, Mark, Kao, Ming-Hung, et al.
Created Date
2018

In the presence of correlation, generalized linear models cannot be employed to obtain regression parameter estimates. To appropriately address the extravariation due to correlation, methods to estimate and model the additional variation are investigated. A general form of the mean-variance relationship is proposed which incorporates the canonical parameter. The two variance parameters are estimated using generalized method of moments, negating the need for a distributional assumption. The mean-variance relation estimates are applied to clustered data and implemented in an adjusted generalized quasi-likelihood approach through an adjustment to the covariance matrix. In the presence of significant correlation in hierarchical structured data, …

Contributors
Irimata, Katherine, Wilson, Jeffrey R, Kamarianakis, Ioannis, et al.
Created Date
2018

Correlation is common in many types of data, including those collected through longitudinal studies or in a hierarchical structure. In the case of clustering, or repeated measurements, there is inherent correlation between observations within the same group, or between observations obtained on the same subject. Longitudinal studies also introduce association between the covariates and the outcomes across time. When multiple outcomes are of interest, association may exist between the various models. These correlations can lead to issues in model fitting and inference if not properly accounted for. This dissertation presents three papers discussing appropriate methods to properly consider different types …

Contributors
Irimata, Kyle, Wilson, Jeffrey R, Broatch, Jennifer, et al.
Created Date
2018

The primary objective in time series analysis is forecasting. Raw data often exhibits nonstationary behavior: trends, seasonal cycles, and heteroskedasticity. After data is transformed to a weakly stationary process, autoregressive moving average (ARMA) models may capture the remaining temporal dynamics to improve forecasting. Estimation of ARMA can be performed through regressing current values on previous realizations and proxy innovations. The classic paradigm fails when dynamics are nonlinear; in this case, parametric, regime-switching specifications model changes in level, ARMA dynamics, and volatility, using a finite number of latent states. If the states can be identified using past endogenous or exogenous information, …

Contributors
Giacomazzo, Mario, Kamarianakis, Yiannis, Reiser, Mark, et al.
Created Date
2018

This dissertation investigates the classification of systemic lupus erythematosus (SLE) in the presence of non-SLE alternatives, while developing novel curve classification methodologies with wide ranging applications. Functional data representations of plasma thermogram measurements and the corresponding derivative curves provide predictors yet to be investigated for SLE identification. Functional nonparametric classifiers form a methodological basis, which is used herein to develop a) the family of ESFuNC segment-wise curve classification algorithms and b) per-pixel ensembles based on logistic regression and fused-LASSO. The proposed methods achieve test set accuracy rates as high as 94.3%, while returning information about regions of the temperature domain …

Contributors
Buscaglia, Robert, Kamarianakis, Yiannis, Armbruster, Dieter, et al.
Created Date
2018

Mediation analysis is used to investigate how an independent variable, X, is related to an outcome variable, Y, through a mediator variable, M (MacKinnon, 2008). If X represents a randomized intervention it is difficult to make a cause and effect inference regarding indirect effects without making no unmeasured confounding assumptions using the potential outcomes framework (Holland, 1988; MacKinnon, 2008; Robins & Greenland, 1992; VanderWeele, 2015), using longitudinal data to determine the temporal order of M and Y (MacKinnon, 2008), or both. The goals of this dissertation were to (1) define all indirect and direct effects in a three-wave longitudinal mediation …

Contributors
Valente, Matthew John, MacKinnon, David P, West, Stephen G, et al.
Created Date
2018

In the study of regional economic growth and convergence, the distribution dynamics approach which interrogates the evolution of the cross-sectional distribution as a whole and is concerned with both the external and internal dynamics of the distribution has received wide usage. However, many methodological issues remain to be resolved before valid inferences and conclusions can be drawn from empirical research. Among them, spatial effects including spatial heterogeneity and spatial dependence invalidate the assumption of independent and identical distributions underlying the conventional maximum likelihood techniques while the availability of small samples in regional settings questions the usage of the asymptotic properties. …

Contributors
KANG, WEI, Rey, Sergio, Fotheringham, Stewart, et al.
Created Date
2018

Investigation of measurement invariance (MI) commonly assumes correct specification of dimensionality across multiple groups. Although research shows that violation of the dimensionality assumption can cause bias in model parameter estimation for single-group analyses, little research on this issue has been conducted for multiple-group analyses. This study explored the effects of mismatch in dimensionality between data and analysis models with multiple-group analyses at the population and sample levels. Datasets were generated using a bifactor model with different factor structures and were analyzed with bifactor and single-factor models to assess misspecification effects on assessments of MI and latent mean differences. As baseline …

Contributors
Xu, Yuning, Green, Samuel, Levy, Roy, et al.
Created Date
2018

The recent technological advances enable the collection of various complex, heterogeneous and high-dimensional data in biomedical domains. The increasing availability of the high-dimensional biomedical data creates the needs of new machine learning models for effective data analysis and knowledge discovery. This dissertation introduces several unsupervised and supervised methods to help understand the data, discover the patterns and improve the decision making. All the proposed methods can generalize to other industrial fields. The first topic of this dissertation focuses on the data clustering. Data clustering is often the first step for analyzing a dataset without the label information. Clustering high-dimensional data …

Contributors
Lin, Sangdi, Runger, George C, Kocher, Jean-Pierre A, et al.
Created Date
2018

Electricity infrastructure vulnerabilities were assessed for future heat waves due to climate change. Critical processes and component relationships were identified and characterized with consideration for the terminal event of service outages, including cascading failures in transmission-level components that can result in blackouts. The most critical dependency identified was the increase in peak electricity demand with higher air temperatures. Historical and future air temperatures were characterized within and across Los Angeles County, California (LAC) and Maricopa County (Phoenix), Arizona. LAC was identified as more vulnerable to heat waves than Phoenix due to a wider distribution of historical temperatures. Two approaches were …

Contributors
Burillo, Daniel, Chester, Mikhail V, Ruddell, Benjamin, et al.
Created Date
2018

Large-scale cultivation of perennial bioenergy crops (e.g., miscanthus and switch- grass) offers unique opportunities to mitigate climate change through avoided fossil fuel use and associated greenhouse gas reduction. Although conversion of existing agriculturally intensive lands (e.g., maize and soy) to perennial bioenergy cropping systems has been shown to reduce near-surface temperatures, unintended consequences on natural water resources via depletion of soil moisture may offset these benefits. In the effort of the cross-fertilization across the disciplines of physics-based modeling and spatio-temporal statistics, three topics are investigated in this dissertation aiming to provide a novel quantification and robust justifications of the hydroclimate …

Contributors
Wang, Meng, Kamarianakis, Yiannis, Georgescu, Matei, et al.
Created Date
2018

Transfer learning is a sub-field of statistical modeling and machine learning. It refers to methods that integrate the knowledge of other domains (called source domains) and the data of the target domain in a mathematically rigorous and intelligent way, to develop a better model for the target domain than a model using the data of the target domain alone. While transfer learning is a promising approach in various application domains, my dissertation research focuses on the particular application in health care, including telemonitoring of Parkinson’s Disease (PD) and radiomics for glioblastoma. The first topic is a Mixed Effects Transfer Learning …

Contributors
Yoon, Hyunsoo, Li, Jing, Wu, Teresa, et al.
Created Date
2018

Statistical model selection using the Akaike Information Criterion (AIC) and similar criteria is a useful tool for comparing multiple and non-nested models without the specification of a null model, which has made it increasingly popular in the natural and social sciences. De- spite their common usage, model selection methods are not driven by a notion of statistical confidence, so their results entail an unknown de- gree of uncertainty. This paper introduces a general framework which extends notions of Type-I and Type-II error to model selection. A theo- retical method for controlling Type-I error using Difference of Goodness of Fit (DGOF) …

Contributors
Cullan, Michael, Sterner, Beckett, Fricks, John, et al.
Created Date
2018

This article proposes a new information-based subdata selection (IBOSS) algorithm, Squared Scaled Distance Algorithm (SSDA). It is based on the invariance of the determinant of the information matrix under orthogonal transformations, especially rotations. Extensive simulation results show that the new IBOSS algorithm retains nice asymptotic properties of IBOSS and gives a larger determinant of the subdata information matrix. It has the same order of time complexity as the D-optimal IBOSS algorithm. However, it exploits the advantages of vectorized calculation avoiding for loops and is approximately 6 times as fast as the D-optimal IBOSS algorithm in R. The robustness of SSDA …

Contributors
Zheng, Yi, Stufken, John, Reiser, Mark, et al.
Created Date
2017

Distributed Renewable energy generators are now contributing a significant amount of energy into the energy grid. Consequently, reliability adequacy of such energy generators will depend on making accurate forecasts of energy produced by them. Power outputs of Solar PV systems depend on the stochastic variation of environmental factors (solar irradiance, ambient temperature & wind speed) and random mechanical failures/repairs. Monte Carlo Simulation which is typically used to model such problems becomes too computationally intensive leading to simplifying state-space assumptions. Multi-state models for power system reliability offer a higher flexibility in providing a description of system state evolution and an accurate …

Contributors
Kadloor, Nikhil, Kuitche, Joseph, Pan, Rong, et al.
Created Date
2017

The Pearson and likelihood ratio statistics are commonly used to test goodness-of-fit for models applied to data from a multinomial distribution. When data are from a table formed by cross-classification of a large number of variables, the common statistics may have low power and inaccurate Type I error level due to sparseness in the cells of the table. The GFfit statistic can be used to examine model fit in subtables. It is proposed to assess model fit by using a new version of GFfit statistic based on orthogonal components of Pearson chi-square as a diagnostic to examine the fit on …

Contributors
Zhu, Junfei, Reiser, Mark, Stufken, John, et al.
Created Date
2017

This dissertation proposes a new set of analytical methods for high dimensional physiological sensors. The methodologies developed in this work were motivated by problems in learning science, but also apply to numerous disciplines where high dimensional signals are present. In the education field, more data is now available from traditional sources and there is an important need for analytical methods to translate this data into improved learning. Affecting Computing which is the study of new techniques that develop systems to recognize and model human emotions is integrating different physiological signals such as electroencephalogram (EEG) and electromyogram (EMG) to detect and …

Contributors
Lujan Moreno, Gustavo A., Runger, George C, Atkinson, Robert K, et al.
Created Date
2017

Information divergence functions, such as the Kullback-Leibler divergence or the Hellinger distance, play a critical role in statistical signal processing and information theory; however estimating them can be challenge. Most often, parametric assumptions are made about the two distributions to estimate the divergence of interest. In cases where no parametric model fits the data, non-parametric density estimation is used. In statistical signal processing applications, Gaussianity is usually assumed since closed-form expressions for common divergence measures have been derived for this family of distributions. Parametric assumptions are preferred when it is known that the data follows the model, however this is …

Contributors
Wisler, Alan, Berisha, Visar, Spanias, Andreas, et al.
Created Date
2017

This study concerns optimal designs for experiments where responses consist of both binary and continuous variables. Many experiments in engineering, medical studies, and other fields have such mixed responses. Although in recent decades several statistical methods have been developed for jointly modeling both types of response variables, an effective way to design such experiments remains unclear. To address this void, some useful results are developed to guide the selection of optimal experimental designs in such studies. The results are mainly built upon a powerful tool called the complete class approach and a nonlinear optimization algorithm. The complete class approach was …

Contributors
Kim, Soohyun, Kao, Ming-Hung, Dueck, Amylou, et al.
Created Date
2017

Time-to-event analysis or equivalently, survival analysis deals with two variables simultaneously: when (time information) an event occurs and whether an event occurrence is observed or not during the observation period (censoring information). In behavioral and social sciences, the event of interest usually does not lead to a terminal state such as death. Other outcomes after the event can be collected and thus, the survival variable can be considered as a predictor as well as an outcome in a study. One example of a case where the survival variable serves as a predictor as well as an outcome is a survival-mediator …

Contributors
Kim, Han Joe, MacKinnon, David P., Tein, Jenn-Yun, et al.
Created Date
2017

A major challenge in health-related policy and program evaluation research is attributing underlying causal relationships where complicated processes may exist in natural or quasi-experimental settings. Spatial interaction and heterogeneity between units at individual or group levels can violate both components of the Stable-Unit-Treatment-Value-Assumption (SUTVA) that are core to the counterfactual framework, making treatment effects difficult to assess. New approaches are needed in health studies to develop spatially dynamic causal modeling methods to both derive insights from data that are sensitive to spatial differences and dependencies, and also be able to rely on a more robust, dynamic technical infrastructure needed for …

Contributors
Kolak, Marynia Aniela, Anselin, Luc, Rey, Sergio, et al.
Created Date
2017

In accelerated life tests (ALTs), complete randomization is hardly achievable because of economic and engineering constraints. Typical experimental protocols such as subsampling or random blocks in ALTs result in a grouped structure, which leads to correlated lifetime observations. In this dissertation, generalized linear mixed model (GLMM) approach is proposed to analyze ALT data and find the optimal ALT design with the consideration of heterogeneous group effects. Two types of ALTs are demonstrated for data analysis. First, constant-stress ALT (CSALT) data with Weibull failure time distribution is modeled by GLMM. The marginal likelihood of observations is approximated by the quadrature rule; …

Contributors
Seo, Kangwon, Pan, Rong, Montgomery, Douglas C, et al.
Created Date
2017

Understanding customer preference is crucial for new product planning and marketing decisions. This thesis explores how historical data can be leveraged to understand and predict customer preference. This thesis presents a decision support framework that provides a holistic view on customer preference by following a two-phase procedure. Phase-1 uses cluster analysis to create product profiles based on which customer profiles are derived. Phase-2 then delves deep into each of the customer profiles and investigates causality behind their preference using Bayesian networks. This thesis illustrates the working of the framework using the case of Intel Corporation, world’s largest semiconductor manufacturing company. …

Contributors
Ram, Sudarshan Venkat, Kempf, Karl G, Wu, Teresa, et al.
Created Date
2017

Predicting resistant prostate cancer is critical for lowering medical costs and improving the quality of life of advanced prostate cancer patients. I formulate, compare, and analyze two mathematical models that aim to forecast future levels of prostate-specific antigen (PSA). I accomplish these tasks by employing clinical data of locally advanced prostate cancer patients undergoing androgen deprivation therapy (ADT). I demonstrate that the inverse problem of parameter estimation might be too complicated and simply relying on data fitting can give incorrect conclusions, since there is a large error in parameter values estimated and parameters might be unidentifiable. I provide confidence intervals …

Contributors
Baez, Javier, Kuang, Yang, Kostelich, Eric, et al.
Created Date
2017

Though the likelihood is a useful tool for obtaining estimates of regression parameters, it is not readily available in the fit of hierarchical binary data models. The correlated observations negate the opportunity to have a joint likelihood when fitting hierarchical logistic regression models. Through conditional likelihood, inferences for the regression and covariance parameters as well as the intraclass correlation coefficients are usually obtained. In those cases, I have resorted to use of Laplace approximation and large sample theory approach for point and interval estimates such as Wald-type confidence intervals and profile likelihood confidence intervals. These methods rely on distributional assumptions …

Contributors
Wang, Bei, Wilson, Jeffrey R, Kamarianakis, Ioannis, et al.
Created Date
2017

Gerrymandering is a central problem for many representative democracies. Formally, gerrymandering is the manipulation of spatial boundaries to provide political advantage to a particular group (Warf, 2006). The term often refers to political district design, where the boundaries of political districts are “unnaturally” manipulated by redistricting officials to generate durable advantages for one group or party. Since free and fair elections are possibly the critical part of representative democracy, it is important for this cresting tide to have scientifically validated tools. This dissertation supports a current wave of reform by developing a general inferential technique to “localize” inferential bias measures, …

Contributors
Wolf, Levi John, Rey, Sergio J, Anselin, Luc, et al.
Created Date
2017

The inherent intermittency in solar energy resources poses challenges to scheduling generation, transmission, and distribution systems. Energy storage devices are often used to mitigate variability in renewable asset generation and provide a mechanism to shift renewable power between periods of the day. In the absence of storage, however, time series forecasting techniques can be used to estimate future solar resource availability to improve the accuracy of solar generator scheduling. The knowledge of future solar availability helps scheduling solar generation at high-penetration levels, and assists with the selection and scheduling of spinning reserves. This study employs statistical techniques to improve the …

Contributors
Soundiah Regunathan Rajasekaran, Dhiwaakar Purusothaman, Johnson, Nathan G, Karady, George G, et al.
Created Date
2016

A simulation study was conducted to explore the influence of partial loading invariance and partial intercept invariance on the latent mean comparison of the second-order factor within a higher-order confirmatory factor analysis (CFA) model. Noninvariant loadings or intercepts were generated to be at one of the two levels or both levels for a second-order CFA model. The numbers and directions of differences in noninvariant loadings or intercepts were also manipulated, along with total sample size and effect size of the second-order factor mean difference. Data were analyzed using correct and incorrect specifications of noninvariant loadings and intercepts. Results summarized across …

Contributors
Liu, Yixing, Thompson, Marilyn, Green, Samuel, et al.
Created Date
2016

The Visceral Leishmaniasis (VL) is primarily endemic in five countries, with India and Sudan having the highest burden. The risk factors associated with VL are either unknown in some regions or vary drastically among empirical studies. Here, a dynamical model, motivated and informed by field data from the literature, is analyzed and employed to identify and quantify the impact of region dependent risks on the VL transmission dynamics. Parameter estimation procedures were developed using model-derived quantities and empirical data from multiple resources. The dynamics of VL depend on the estimates of the control reproductive number, RC, interpreted as the average …

Contributors
Barley, Kamal Kevin, Castillo-Chavez, Carlos, Mubayi, Anuj, et al.
Created Date
2016

In two independent and thematically connected chapters, I investigate consumers' willingness to pay a price premium in response to product development that entails prosocial attributes (PATs), those that allude to the reduction of negative externalities to benefit society, and to an innovative participatory pricing design called 'Pay-What-You-Want' (PWYW) pricing, a mechanism that relinquishes the determination of payments in exchange for private goods to the consumers themselves partly relying on their prosocial preferences to drive positive payments. First, I propose a novel statistical approach built on the choice based contingent valuation technique to estimate incremental willingness to pay (IWTP) for PATs …

Contributors
Christopher, Ranjit M., Wiles, Michael, Ketcham, Jonathan, et al.
Created Date
2016

Mixture experiments are useful when the interest is in determining how changes in the proportion of an experimental component affects the response. This research focuses on the modeling and design of mixture experiments when the response is categorical namely, binary and ordinal. Data from mixture experiments is characterized by the perfect collinearity of the experimental components, resulting in model matrices that are singular and inestimable under likelihood estimation procedures. To alleviate problems with estimation, this research proposes the reparameterization of two nonlinear models for ordinal data -- the proportional-odds model with a logistic link and the stereotype model. A study …

Contributors
Mancenido, Michelle V., Montgomery, Douglas C, Pan, Rong, et al.
Created Date
2016

This dissertation carries out an inter-disciplinary research of operations research, statistics, power system engineering, and economics. Specifically, this dissertation focuses on a special power system scheduling problem, a unit commitment problem with uncertainty. This scheduling problem is a two-stage decision problem. In the first stage, system operator determines the binary commitment status (on or off) of generators in advance. In the second stage, after the realization of uncertainty, the system operator determines generation levels of the generators. The goal of this dissertation is to develop computationally-tractable methodologies and algorithms to solve large-scale unit commitment problems with uncertainty. In the first …

Contributors
Li, Chao, Hedman, Kory W, Zhang, Muhong, et al.
Created Date
2016

Anomaly is a deviation from the normal behavior of the system and anomaly detection techniques try to identify unusual instances based on deviation from the normal data. In this work, I propose a machine-learning algorithm, referred to as Artificial Contrasts, for anomaly detection in categorical data in which neither the dimension, the specific attributes involved, nor the form of the pattern is known a priori. I use RandomForest (RF) technique as an effective learner for artificial contrast. RF is a powerful algorithm that can handle relations of attributes in high dimensional data and detect anomalies while providing probability estimates for …

Contributors
Mousavi, Seyyedehnasim, Runger, George, Wu, Teresa, et al.
Created Date
2016

The dawn of Internet of Things (IoT) has opened the opportunity for mainstream adoption of machine learning analytics. However, most research in machine learning has focused on discovery of new algorithms or fine-tuning the performance of existing algorithms. Little exists on the process of taking an algorithm from the lab-environment into the real-world, culminating in sustained value. Real-world applications are typically characterized by dynamic non-stationary systems with requirements around feasibility, stability and maintainability. Not much has been done to establish standards around the unique analytics demands of real-world scenarios. This research explores the problem of the why so few of …

Contributors
Shahapurkar, Som, Liu, Huan, Davulcu, Hasan, et al.
Created Date
2016

Accurate data analysis and interpretation of results may be influenced by many potential factors. The factors of interest in the current work are the chosen analysis model(s), the presence of missing data, and the type(s) of data collected. If analysis models are used which a) do not accurately capture the structure of relationships in the data such as clustered/hierarchical data, b) do not allow or control for missing values present in the data, or c) do not accurately compensate for different data types such as categorical data, then the assumptions associated with the model have not been met and the …

Contributors
Kunze, Katie Lynn, Levy, Roy, Enders, Craig K, et al.
Created Date
2016