Skip to main content

ASU Electronic Theses and Dissertations

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at

The ability to plan, execute, and control goal oriented reaching and grasping movements is among the most essential functions of the brain. Yet, these movements are inherently variable; a result of the noise pervading the neural signals underlying sensorimotor processing. The specific influences and interactions of these noise processes remain unclear. Thus several studies have been performed to elucidate the role and influence of sensorimotor noise on movement variability. The first study focuses on sensory integration and movement planning across the reaching workspace. An experiment was designed to examine the relative contributions of vision and proprioception to movement planning by …

Apker, Gregory, Buneo, Christopher A, Helms Tillery, Stephen, et al.
Created Date

Spike sorting is a critical step for single-unit-based analysis of neural activities extracellularly and simultaneously recorded using multi-channel electrodes. When dealing with recordings from very large numbers of neurons, existing methods, which are mostly semiautomatic in nature, become inadequate. This dissertation aims at automating the spike sorting process. A high performance, automatic and computationally efficient spike detection and clustering system, namely, the M-Sorter2 is presented. The M-Sorter2 employs the modified multiscale correlation of wavelet coefficients (MCWC) for neural spike detection. At the center of the proposed M-Sorter2 are two automatic spike clustering methods. They share a common hierarchical agglomerative modeling …

Ma, Weichao, Si, Jennie, Papandreou-Suppappola, Antonia, et al.
Created Date