Skip to main content

ASU Electronic Theses and Dissertations

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at

The past two decades have been monumental in the advancement of microchips designed for a diverse range of medical applications and bio-analysis. Owing to the remarkable progress in micro-fabrication technology, complex chemical and electro-mechanical features can now be integrated into chip-scale devices for use in biosensing and physiological measurements. Some of these devices have made enormous contributions in the study of complex biochemical processes occurring at the molecular and cellular levels while others overcame the challenges of replicating various functions of human organs as implant systems. This thesis presents test data and analysis of two such systems. First, an ISFET …

Mamun, Samiha, Christen, Jennifer Blain, Goryll, Michael, et al.
Created Date

Developing countries suffer from various health challenges due to inaccessible medical diagnostic laboratories and lack of resources to establish new laboratories. One way to address these issues is to develop diagnostic systems that are suitable for the low-resource setting. In addition to this, applications requiring rapid analyses further motivates the development of portable, easy-to-use, and accurate Point of Care (POC) diagnostics. Lateral Flow Immunoassays (LFIAs) are among the most successful POC tests as they satisfy most of the ASSURED criteria. However, factors like reagent stability, reaction rates limit the performance and robustness of LFIAs. The fluid flow rate in LFIA …

Thamatam, Nipun, Christen, Jennifer Blain, Goryll, Michael, et al.
Created Date