Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Subject
Date Range
2011 2019


Pulse Density Modulation- (PDM-) based class-D amplifiers can reduce non-linearity and tonal content due to carrier signal in Pulse Width Modulation - (PWM-) based amplifiers. However, their low-voltage analog implementations also require a linear- loop filter and a quantizer. A PDM-based class-D audio amplifier using a frequency-domain quantization is presented in this paper. The digital-intensive frequency domain approach achieves high linearity under low-supply regimes. An analog comparator and a single-bit quantizer are replaced with a Current-Controlled Oscillator- (ICO-) based frequency discriminator. By using the ICO as a phase integrator, a third-order noise shaping is achieved using only two analog integrators. …

Contributors
Lee, Junghan, Bakkaloglu, Bertan, Kiaei, Sayfe, et al.
Created Date
2011

The first part describes Metal Semiconductor Field Effect Transistor (MESFET) based fundamental analog building blocks designed and fabricated in a single poly, 3-layer metal digital CMOS technology utilizing fully depletion mode MESFET devices. DC characteristics were measured by varying the power supply from 2.5V to 5.5V. The measured DC transfer curves of amplifiers show good agreement with the simulated ones with extracted models from the same process. The accuracy of the current mirror showing inverse operation is within ±15% for the current from 0 to 1.5mA with the power supply from 2.5 to 5.5V. The second part presents a low-power …

Contributors
Kim, Sung Ho, Bakkaloglu, Bertan, Christen, Jennifer Blain, et al.
Created Date
2011

The past two decades have been monumental in the advancement of microchips designed for a diverse range of medical applications and bio-analysis. Owing to the remarkable progress in micro-fabrication technology, complex chemical and electro-mechanical features can now be integrated into chip-scale devices for use in biosensing and physiological measurements. Some of these devices have made enormous contributions in the study of complex biochemical processes occurring at the molecular and cellular levels while others overcame the challenges of replicating various functions of human organs as implant systems. This thesis presents test data and analysis of two such systems. First, an ISFET …

Contributors
Mamun, Samiha, Christen, Jennifer Blain, Goryll, Michael, et al.
Created Date
2011

In this thesis I introduce a new direction to computing using nonlinear chaotic dynamics. The main idea is rich dynamics of a chaotic system enables us to (1) build better computers that have a flexible instruction set, and (2) carry out computation that conventional computers are not good at it. Here I start from the theory, explaining how one can build a computing logic block using a chaotic system, and then I introduce a new theoretical analysis for chaos computing. Specifically, I demonstrate how unstable periodic orbits and a model based on them explains and predicts how and how well …

Contributors
Kia, Behnam, Ditto, William, Huang, Liang, et al.
Created Date
2011

This thesis investigated two different thermal flow sensors for intravascular shear stress analysis. They were based on heat transfer principle, which heat convection from the resistively heated element to the flowing fluid was measured as a function of the changes in voltage. For both sensors, the resistively heated elements were made of Ti/Pt strips with the thickness 0.12 µm and 0.02 µm. The resistance of the sensing element was measured at approximately 1.6-1.7 kohms;. A linear relation between the resistance and temperature was established over the temperature ranging from 22 degree Celsius to 80 degree Celsius and the temperature coefficient …

Contributors
Tang, Rui, Yu, Hongyu, Jiang, Hanqing, et al.
Created Date
2011

ABSTRACT To meet stringent market demands, manufacturers must produce Radio Frequency (RF) transceivers that provide wireless communication between electronic components used in consumer products at extremely low cost. Semiconductor manufacturers are in a steady race to increase integration levels through advanced system-on-chip (SoC) technology. The testing costs of these devices tend to increase with higher integration levels. As the integration levels increase and the devices get faster, the need for high-calibre low cost test equipment become highly dominant. However testing the overall system becomes harder and more expensive. Traditionally, the transceiver system is tested in two steps utilizing high-calibre RF …

Contributors
Sreenivassan, Aiswariya, Ozev, Sule, Kiaei, Sayfe, et al.
Created Date
2011

The electric transmission grid is conventionally treated as a fixed asset and is operated around a single topology. Though several instances of switching transmission lines for corrective mechaism, congestion management, and minimization of losses can be found in literature, the idea of co-optimizing transmission with generation dispatch has not been widely investigated. Network topology optimization exploits the redundancies that are an integral part of the network to allow for improvement in dispatch efficiency. Although, the concept of a dispatchable network initially appears counterintuitive questioning the wisdom of switching transmission lines on a more regu-lar basis, results obtained in the previous …

Contributors
Potluri, Tejaswi, Hedman, Kory, Vittal, Vijay, et al.
Created Date
2011

In very small electronic devices the alternate capture and emission of carriers at an individual defect site located at the interface of Si:SiO2 of a MOSFET generates discrete switching in the device conductance referred to as a random telegraph signal (RTS) or random telegraph noise (RTN). In this research work, the integration of random defects positioned across the channel at the Si:SiO2 interface from source end to the drain end in the presence of different random dopant distributions are used to conduct Ensemble Monte-Carlo ( EMC ) based numerical simulation of key device performance metrics for 45 nm gate length …

Contributors
Ashraf, Nabil Shovon, Vasileska, Dragica, Schroder, Dieter, et al.
Created Date
2011

Voltage Control Oscillator (VCO) is one of the most critical blocks in Phase Lock Loops (PLLs). LC-tank VCOs have a superior phase noise performance, however they require bulky passive resonators and often calibration architectures to overcome their limited tuning range. Ring oscillator (RO) based VCOs are attractive for digital technology applications owing to their ease of integration, small die area and scalability in deep submicron processes. However, due to their supply sensitivity and poor phase noise performance, they have limited use in applications demanding low phase noise floor, such as wireless or optical transceivers. Particularly, out-of-band phase noise of RO-based …

Contributors
Min, Seungkee, Kiaei, Sayfe, Bakkaloglu, Bertan, et al.
Created Date
2011

Due to restructuring and open access to the transmission system, modern electric power systems are being operated closer to their operational limits. Additionally, the secure operational limits of modern power systems have become increasingly difficult to evaluate as the scale of the network and the number of transactions between utilities increase. To account for these challenges associated with the rapid expansion of electric power systems, dynamic equivalents have been widely applied for the purpose of reducing the computational effort of simulation-based transient security assessment. Dynamic equivalents are commonly developed using a coherency-based approach in which a retained area and an …

Contributors
Ma, Feng, Vittal, Vijay, Tylavsky, Daniel, et al.
Created Date
2011

Semiconductor devices are generally analyzed with relatively simple equations or with detailed computer simulations. Most text-books use these simple equations and show device diagrams that are frequently very simplified and occasionally incorrect. For example, the carrier densities near the pinch-off point in MOSFETs and JFETs and the minority carrier density in the base near the reverse-biased base-collector junction are frequently assumed to be zero or near zero. Also the channel thickness at the pinch-off point is often shown to approach zero. None of these assumptions can be correct. The research in thesis addresses these points. I simulated the carrier densities, …

Contributors
Yang, Xuan, Schroder, Dieter K, Vasileska, Dragica, et al.
Created Date
2011

Proportional-Integral-Derivative (PID) controllers are a versatile category of controllers that are commonly used in the industry as control systems due to the ease of their implementation and low cost. One problem that continues to intrigue control designers is the matter of finding a good combination of the three parameters - P, I and D of these controllers so that system stability and optimum performance is achieved. Also, a certain amount of robustness to the process is expected from the PID controllers. In the past, many different methods for tuning PID parameters have been developed. Some notable techniques are the Ziegler-Nichols, …

Contributors
Shafique, Md Ashfaque Bin, Tsakalis, Konstantinos S., Rodriguez, Armando A., et al.
Created Date
2011

This thesis describes an approach to system identification based on compressive sensing and demonstrates its efficacy on a challenging classical benchmark single-input, multiple output (SIMO) mechanical system consisting of an inverted pendulum on a cart. Due to its inherent non-linearity and unstable behavior, very few techniques currently exist that are capable of identifying this system. The challenge in identification also lies in the coupled behavior of the system and in the difficulty of obtaining the full-range dynamics. The differential equations describing the system dynamics are determined from measurements of the system's input-output behavior. These equations are assumed to consist of …

Contributors
Naik, Manjish Arvind, Cochran, Douglas, Kovvali, Narayan, et al.
Created Date
2011

Fiber-Wireless (FiWi) network is the future network configuration that uses optical fiber as backbone transmission media and enables wireless network for the end user. Our study focuses on the Dynamic Bandwidth Allocation (DBA) algorithm for EPON upstream transmission. DBA, if designed properly, can dramatically improve the packet transmission delay and overall bandwidth utilization. With new DBA components coming out in research, a comprehensive study of DBA is conducted in this thesis, adding in Double Phase Polling coupled with novel Limited with Share credits Excess distribution method. By conducting a series simulation of DBAs using different components, we found out that …

Contributors
Zhao, Du, Reisslein, Martin, Mcgarry, Michael, et al.
Created Date
2011

Thin film transistors (TFTs) are being used in a wide variety of applications such as image sensors, radiation detectors, as well as for use in liquid crystal displays. However, there is a conspicuous absence of interface electronics for bridging the gap between the flexible sensors and digitized displays. Hence is the need to build the same. In this thesis, the feasibility of building mixed analog circuits in TFTs are explored and demonstrated. A flexible CMOS op-amp is demonstrated using a-Si:H and pentacene TFTs. The achieved performance is ¡Ö 50 dB of DC open loop gain with unity gain frequency (UGF) …

Contributors
Dey, Aritra, Allee, David R, Bakkaloglu, Bertan, et al.
Created Date
2011

Advancements in computer vision and machine learning have added a new dimension to remote sensing applications with the aid of imagery analysis techniques. Applications such as autonomous navigation and terrain classification which make use of image classification techniques are challenging problems and research is still being carried out to find better solutions. In this thesis, a novel method is proposed which uses image registration techniques to provide better image classification. This method reduces the error rate of classification by performing image registration of the images with the previously obtained images before performing classification. The motivation behind this is the fact …

Contributors
Muralidhar, Ashwini, Saripalli, Srikanth, Papandreou-Suppappola, Antonia, et al.
Created Date
2011

A workload-aware low-power neuromorphic controller for dynamic power and thermal management in VLSI systems is presented. The neuromorphic controller predicts future workload and temperature values based on the past values and CPU performance counters and preemptively regulates supply voltage and frequency. System-level measurements from stateof-the-art commercial microprocessors are used to get workload, temperature and CPU performance counter values. The controller is designed and simulated using circuit-design and synthesis tools. At device-level, on-chip planar inductors suffer from low inductance occupying large chip area. On-chip inductors with integrated magnetic materials are designed, simulated and fabricated to explore performance-efficiency trade offs and explore …

Contributors
Sinha, Saurabh, Cao, Yu, Bakkaloglu, Bertan, et al.
Created Date
2011

There are many wireless communication and networking applications that require high transmission rates and reliability with only limited resources in terms of bandwidth, power, hardware complexity etc.. Real-time video streaming, gaming and social networking are a few such examples. Over the years many problems have been addressed towards the goal of enabling such applications; however, significant challenges still remain, particularly, in the context of multi-user communications. With the motivation of addressing some of these challenges, the main focus of this dissertation is the design and analysis of capacity approaching coding schemes for several (wireless) multi-user communication scenarios. Specifically, three main …

Contributors
Bhat, Uttam, Duman, Tolga M., Tepedelenlioglu, Cihan, et al.
Created Date
2011

Dual-wavelength laser sources have various existing and potential applications in wavelength division multiplexing, differential techniques in spectroscopy for chemical sensing, multiple-wavelength interferometry, terahertz-wave generation, microelectromechanical systems, and microfluidic lab-on-chip systems. In the drive for ever smaller and increasingly mobile electronic devices, dual-wavelength coherent light output from a single semiconductor laser diode would enable further advances and deployment of these technologies. The output of conventional laser diodes is however limited to a single wavelength band with a few subsequent lasing modes depending on the device design. This thesis investigates a novel semiconductor laser device design with a single cavity waveguide capable …

Contributors
Green, Benjamin C., Zhang, Yong-Hang, Ning, Cun-Zheng, et al.
Created Date
2011

Current sensing ability is one of the most desirable features of contemporary current or voltage mode controlled DC-DC converters. Current sensing can be used for over load protection, multi-stage converter load balancing, current-mode control, multi-phase converter current-sharing, load independent control, power efficiency improvement etc. There are handful existing approaches for current sensing such as external resistor sensing, triode mode current mirroring, observer sensing, Hall-Effect sensors, transformers, DC Resistance (DCR) sensing, Gm-C filter sensing etc. However, each method has one or more issues that prevent them from being successfully applied in DC-DC converter, e.g. low accuracy, discontinuous sensing nature, high sensitivity …

Contributors
Liu, Tao, Bakkaloglu, Bertan, Bakkaloglu, Bertan, et al.
Created Date
2011

Great advances have been made in the construction of photovoltaic (PV) cells and modules, but array level management remains much the same as it has been in previous decades. Conventionally, the PV array is connected in a fixed topology which is not always appropriate in the presence of faults in the array, and varying weather conditions. With the introduction of smarter inverters and solar modules, the data obtained from the photovoltaic array can be used to dynamically modify the array topology and improve the array power output. This is beneficial especially when module mismatches such as shading, soiling and aging …

Contributors
Buddha, Santoshi Tejasri, Spanias, Andreas, Tepedelenlioglu, Cihan, et al.
Created Date
2011

In this thesis, a Built-in Self Test (BiST) based testing solution is proposed to measure linear and non-linear impairments in the RF Transmitter path using analytical approach. Design issues and challenges with the impairments modeling and extraction in transmitter path are discussed. Transmitter is modeled for I/Q gain & phase mismatch, system non-linearity and DC offset using Matlab. BiST architecture includes a peak detector which includes a self mode mixer and 200 MHz filter. Self Mode mixing operation with filtering removes the high frequency signal contents and allows performing analysis on baseband frequency signals. Transmitter impairments were calculated using spectral …

Contributors
Goyal, Nitin, Ozev, Sule, Duman, Tolga, et al.
Created Date
2011

Radiation-induced gain degradation in bipolar devices is considered to be the primary threat to linear bipolar circuits operating in the space environment. The damage is primarily caused by charged particles trapped in the Earth's magnetosphere, the solar wind, and cosmic rays. This constant radiation exposure leads to early end-of-life expectancies for many electronic parts. Exposure to ionizing radiation increases the density of oxide and interfacial defects in bipolar oxides leading to an increase in base current in bipolar junction transistors. Radiation-induced excess base current is the primary cause of current gain degradation. Analysis of base current response can enable the …

Contributors
Campola, Michael Joseph, Barnaby, Hugh J, Holbert, Keith E, et al.
Created Date
2011

Underwater acoustic communications face significant challenges unprecedented in radio terrestrial communications including long multipath delay spreads, strong Doppler effects, and stringent bandwidth requirements. Recently, multi-carrier communications based on orthogonal frequency division multiplexing (OFDM) have seen significant growth in underwater acoustic (UWA) communications, thanks to their well well-known robustness against severely time-dispersive channels. However, the performance of OFDM systems over UWA channels significantly deteriorates due to severe intercarrier interference (ICI) resulting from rapid time variations of the channel. With the motivation of developing enabling techniques for OFDM over UWA channels, the major contributions of this thesis include (1) two effective frequencydomain …

Contributors
Tu, Kai, Duman, Tolga M, Zhang, Junshan, et al.
Created Date
2011

Semiconductor nanowires are featured by their unique one-dimensional structure which makes them promising for small scale electronic and photonic device applications. Among them, III-V material nanowires are particularly outstanding due to their good electronic properties. In bulk, these materials reveal electron mobility much higher than conventional silicon based devices, for example at room temperature, InAs field effect transistor (FET) has electron mobility of 40,000 cm2/Vs more than 10 times of Si FET. This makes such materials promising for high speed nanowire FETs. With small bandgap, such as 0.354 eV for InAs and 1.52 eV for GaAs, it does not need …

Contributors
Liang, Hanshuang, Yu, Hongbin, Ferry, David, et al.
Created Date
2011

The drive towards device scaling and large output power in millimeter and sub-millimeter wave power amplifiers results in a highly non-linear, out-of-equilibrium charge transport regime. Particle-based Full Band Monte Carlo device simulators allow an accurate description of this carrier dynamics at the nanoscale. This work initially compares GaN high electron mobility transistors (HEMTs) based on the established Ga-face technology and the emerging N-face technology, through a modeling approach that allows a fair comparison, indicating that the N-face devices exhibit improved performance with respect to Ga-face ones due to the natural back-barrier confinement that mitigates short-channel-effects. An investigation is then carried …

Contributors
Guerra, Diego, Saraniti, Marco, Saraniti, Marco, et al.
Created Date
2011

In this thesis, an adaptive waveform selection technique for dynamic target tracking under low signal-to-noise ratio (SNR) conditions is investigated. The approach is integrated with a track-before-detect (TBD) algorithm and uses delay-Doppler matched filter (MF) outputs as raw measurements without setting any threshold for extracting delay-Doppler estimates. The particle filter (PF) Bayesian sequential estimation approach is used with the TBD algorithm (PF-TBD) to estimate the dynamic target state. A waveform-agile TBD technique is proposed that integrates the PF-TBD with a waveform selection technique. The new approach predicts the waveform to transmit at the next time step by minimizing the predicted …

Contributors
Piwowarski, Ryan, Papandreou-Suppappola, Antonia, Chakrabarti, Chaitali, et al.
Created Date
2011

Magnetic Resonance Imaging (MRI) is limited in speed and resolution by the inherently low Signal to Noise Ratio (SNR) of the underlying signal. Advances in sampling efficiency are required to support future improvements in scan time and resolution. SNR efficiency is improved by sampling data for a larger proportion of total imaging time. This is challenging as these acquisitions are typically subject to artifacts such as blurring and distortions. The current work proposes a set of tools to help with the creation of different types of SNR efficient scans. An SNR efficient pulse sequence providing diffusion imaging data with full …

Contributors
Aboussouan, Eric, Frakes, David, Pipe, James, et al.
Created Date
2011

This dissertation describes a novel, low cost strategy of using particle streak (track) images for accurate micro-channel velocity field mapping. It is shown that 2-dimensional, 2-component fields can be efficiently obtained using the spatial variation of particle track lengths in micro-channels. The velocity field is a critical performance feature of many microfluidic devices. Since it is often the case that un-modeled micro-scale physics frustrates principled design methodologies, particle based velocity field estimation is an essential design and validation tool. Current technologies that achieve this goal use particle constellation correlation strategies and rely heavily on costly, high-speed imaging hardware. The proposed …

Contributors
Mahanti, Prasun, Cochran, Douglas, Taylor, Thomas, et al.
Created Date
2011

Super-Resolution (SR) techniques are widely developed to increase image resolution by fusing several Low-Resolution (LR) images of the same scene to overcome sensor hardware limitations and reduce media impairments in a cost-effective manner. When choosing a solution for the SR problem, there is always a trade-off between computational efficiency and High-Resolution (HR) image quality. Existing SR approaches suffer from extremely high computational requirements due to the high number of unknowns to be estimated in the solution of the SR inverse problem. This thesis proposes efficient iterative SR techniques based on Visual Attention (VA) and perceptual modeling of the human visual …

Contributors
Sadaka, Nabil Gergi, Karam, Lina J, Spanias, Andreas S, et al.
Created Date
2011

ABSTRACT An Ensemble Monte Carlo (EMC) computer code has been developed to simulate, semi-classically, spin-dependent electron transport in quasi two-dimensional (2D) III-V semiconductors. The code accounts for both three-dimensional (3D) and quasi-2D transport, utilizing either 3D or 2D scattering mechanisms, as appropriate. Phonon, alloy, interface roughness, and impurity scattering mechanisms are included, accounting for the Pauli Exclusion Principle via a rejection algorithm. The 2D carrier states are calculated via a self-consistent 1D Schrödinger-3D-Poisson solution in which the charge distribution of the 2D carriers in the quantization direction is taken as the spatial distribution of the squared envelope functions within the …

Contributors
Tierney, Brian David, Goodnick, Stephen, Ferry, David, et al.
Created Date
2011

During the past decade, different kinds of fancy functions are developed in portable electronic devices. This trend triggers the research of how to enhance battery lifetime to meet the requirement of fast growing demand of power in portable devices. DC-DC converter is the connection configuration between the battery and the functional circuitry. A good design of DC-DC converter will maximize the power efficiency and stabilize the power supply of following stages. As the representative of the DC-DC converter, Buck converter, which is a step down DC-DC converter that the output voltage level is smaller than the input voltage level, is …

Contributors
Fu, Chao, Bakkaloglu, Bertan, Cao, Yu, et al.
Created Date
2011

Multidimensional (MD) discrete Fourier transform (DFT) is a key kernel algorithm in many signal processing applications, such as radar imaging and medical imaging. Traditionally, a two-dimensional (2-D) DFT is computed using Row-Column (RC) decomposition, where one-dimensional (1-D) DFTs are computed along the rows followed by 1-D DFTs along the columns. However, architectures based on RC decomposition are not efficient for large input size data which have to be stored in external memories based Synchronous Dynamic RAM (SDRAM). In this dissertation, first an efficient architecture to implement 2-D DFT for large-sized input data is proposed. This architecture achieves very high throughput …

Contributors
Yu, Chi-Li, Chakrabarti, Chaitali, Papandreou-Suppappola, Antonia, et al.
Created Date
2012

Phase locked loops are an integral part of any electronic system that requires a clock signal and find use in a broad range of applications such as clock and data recovery circuits for high speed serial I/O and frequency synthesizers for RF transceivers and ADCs. Traditionally, PLLs have been primarily analog in nature and since the development of the charge pump PLL, they have almost exclusively been analog. Recently, however, much research has been focused on ADPLLs because of their scalability, flexibility and higher noise immunity. This research investigates some of the latest all-digital PLL architectures and discusses the qualities …

Contributors
Zazzera, Joshua, Bakkaloglu, Bertan, Bakkaloglu, Bertan, et al.
Created Date
2012

Due to economic and environmental reasons, several states in the United States of America have a mandated renewable portfolio standard which requires that a certain percentage of the load served has to be met by renewable resources of energy such as solar, wind and biomass. Renewable resources provide energy at a low variable cost and produce less greenhouse gases as compared to conventional generators. However, some of the complex issues with renewable resource integration are due to their intermittent and non-dispatchable characteristics. Furthermore, most renewable resources are location constrained and are usually located in regions with insufficient transmission facilities. In …

Contributors
Hariharan, Sruthi, Vittal, Vijay, Heydt, Gerald, et al.
Created Date
2012

This paper presents a theoretical model for evaluating flashover performance of insulators under contaminated conditions. The model introduces several new features when compared with existing models such as, the formation of dry bands, variations in insulator geometry and surface wettability. The electric field distribution obtained from software for 3-Dimensional models along with form factor are used to determine the dimensions of the dry bands and the onset of arcing. The model draws heavily from experimental measurements of flashover voltage and surface resistance under wet conditions of porcelain and composite insulators. The model illustrates the dominant role played by the insulator …

Contributors
Bo, Lin, Gorur, Ravi, Vittal, Vijay, et al.
Created Date
2012

This thesis is focused on the study of wind energy integration and is divided into two segments. The first part of the thesis deals with developing a reliability evaluation technique for a wind integrated power system. A multiple-partial outage model is utilized to accurately calculate the wind generation availability. A methodology is presented to estimate the outage probability of wind generators while incorporating their reduced power output levels at low wind speeds. Subsequently, power system reliability is assessed by calculating the loss of load probability (LOLP) and the effect of wind integration on the overall system is analyzed. Actual generation …

Contributors
Sinha, Anubhav, Heydt, Gerald T, Vittal, Vijay, et al.
Created Date
2012

Network-on-Chip (NoC) architectures have emerged as the solution to the on-chip communication challenges of multi-core embedded processor architectures. Design space exploration and performance evaluation of a NoC design requires fast simulation infrastructure. Simulation of register transfer level model of NoC is too slow for any meaningful design space exploration. One of the solutions to reduce the speed of simulation is to increase the level of abstraction. SystemC TLM2.0 provides the capability to model hardware design at higher levels of abstraction with trade-off of simulation speed and accuracy. In this thesis, SystemC TLM2.0 models of NoC routers are developed at three …

Contributors
Arlagadda Narasimharaju, Jyothi Swaroop, Chatha, Karamvir S, Sen, Arunabha, et al.
Created Date
2012

The non-quasi-static (NQS) description of device behavior is useful in fast switching and high frequency circuit applications. Hence, it is necessary to develop a fast and accurate compact NQS model for both large-signal and small-signal simulations. A new relaxation-time-approximation based NQS MOSFET model, consistent between transient and small-signal simulations, has been developed for surface-potential-based MOSFET compact models. The new model is valid for all regions of operation and is compatible with, and at low frequencies recovers, the quasi-static (QS) description of the MOSFET. The model is implemented in two widely used circuit simulators and tested for speed and convergence. It …

Contributors
Zhu, Zeqin, Gildenblat, Gennady, Bakkaloglu, Bertan, et al.
Created Date
2012

With increased usage of green energy, the number of photovoltaic arrays used in power generation is increasing rapidly. Many of the arrays are located at remote locations where faults that occur within the array often go unnoticed and unattended for large periods of time. Technicians sent to rectify the faults have to spend a large amount of time determining the location of the fault manually. Automated monitoring systems are needed to obtain the information about the performance of the array and detect faults. Such systems must monitor the DC side of the array in addition to the AC side to …

Contributors
Krishnan, Venkatachalam, Tepedelenlioglu, Cihan, Spanias, Andreas, et al.
Created Date
2012

Infrared photodetectors, used in applications for sensing and imaging, such as military target recognition, chemical/gas detection, and night vision enhancement, are predominantly comprised of an expensive II-VI material, HgCdTe. III-V type-II superlattices (SLs) have been studied as viable alternatives for HgCdTe due to the SL advantages over HgCdTe: greater control of the alloy composition, resulting in more uniform materials and cutoff wavelengths across the wafer; stronger bonds and structural stability; less expensive substrates, i.e., GaSb; mature III-V growth and processing technologies; lower band-to-band tunneling due to larger electron effective masses; and reduced Auger recombination enabling operation at higher temperatures and …

Contributors
Steenbergen, Elizabeth H., Zhang, Yong-Hang, Brown, Gail J., et al.
Created Date
2012

In today's world there is a great need for sensing methods as tools to provide critical information to solve today's problems in security applications. Real time detection of trace chemicals, such as explosives, in a complex environment containing various interferents using a portable device that can be reliably deployed in a field has been a difficult challenge. A hybrid nanosensor based on the electrochemical reduction of trinitrotoluene (TNT) and the interaction of the reduction products with conducting polymer nanojunctions in an ionic liquid was fabricated. The sensor simultaneously measures the electrochemical current from the reduction of TNT and the conductance …

Contributors
Diaz Aguilar, Alvaro, Tao, Nongjian, Tsui, Raymond, et al.
Created Date
2012

Three-dimensional (3D) inductors with square, hexagonal and octagonal geometries have been designed and simulated in ANSYS HFSS. The inductors have been designed on Silicon substrate with through-hole via with different width, spacing and thickness. Spice modeling has been done in Agilent ADS and comparison has been made with results of custom excel based calculator and HFSS simulation results. Single ended quality factor was measured as 12.97 and differential ended quality factor was measured as 15.96 at a maximum operational frequency of 3.65GHz. The single ended and differential inductance was measured as 2.98nH and 2.88nH respectively at this frequency. Based on …

Contributors
Abbey, Hemanshu, Bakkaloglu, Bertan, Kiaei, Sayfe, et al.
Created Date
2012

In this work, I worked on the synthesis and characterization of nanowires and belts, grown using different materials, in Chemical Vapor Deposition (CVD) system with catalytic growth method. Through this thesis, I utilized the Photoluminescence (PL), Secondary Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray diffraction (XRD) analyses to find out the properties of Erbium Chloride Silicate (ECS) and two segment CdS-CdSe samples. In the first part of my research, growth of very new material, Erbium Chloride Silicate (ECS), in form of core/shell Si/ECS and pure ECS nanowires, was demonstrated. This new material has very fascinating properties for new …

Contributors
Turkdogan, Sunay, Ning, Cun-Zheng, Tao, Meng, et al.
Created Date
2012

This thesis summarizes the research work carried out on design, modeling and simulation of semiconductor nanophotonic devices. The research includes design of nanowire (NW) lasers, modeling of active plasmonic waveguides, design of plasmonic nano-lasers, and design of all-semiconductor plasmonic systems. For the NW part, a comparative study of electrical injection in the longitudinal p-i-n and coaxial p-n core-shell NWs was performed. It is found that high density carriers can be efficiently injected into and confined in the core-shell structure. The required bias voltage and doping concentrations in the core-shell structure are smaller than those in the longitudinal p-i-n structure. A …

Contributors
Li, Debin, Ning, Cun-Zheng, Zhang, Yong-Hang, et al.
Created Date
2012

Advances in miniaturized sensors and wireless technologies have enabled mobile health systems for efficient healthcare. A mobile health system assists the physician to monitor the patient's progress remotely and provide quick feedbacks and suggestions in case of emergencies, which reduces the cost of healthcare without the expense of hospitalization. This work involves development of an innovative mobile health system with adaptive biofeedback mechanism and demonstrates the importance of biofeedback in accurate measurements of physiological parameters to facilitate the diagnosis in mobile health systems. Resting Metabolic Rate (RMR) assessment, a key aspect in the treatment of diet related health problems is …

Contributors
Krishnan, Ranganath, Tao, Nongjian, Forzani, Erica, et al.
Created Date
2012

This research investigated using impedance as a minimally invasive oral cancer-screening tool by modeling healthy and diseased tissue. This research developed an ultra-structurally based tissue model for oral mucosa that is versatile enough to be easily modified to mimic the passive electrical impedance responses of multiple benign and cancerous tissue types. This new model provides answers to biologically meaningful questions related to the impedance response of healthy and diseased tissues. This model breaks away from the old empirical top down "black box" Thèvinin equivalent model. The new tissue model developed here was created from a bottom up perspective resulting in …

Contributors
Pelletier, Peter Robert, Kozicki, Michael, Towe, Bruce, et al.
Created Date
2012

This thesis concerns the impact of energy storage on the power system. The rapidly increasing integration of renewable energy source into the grid is driving greater attention towards electrical energy storage systems which can serve many applications like economically meeting peak loads, providing spinning reserve. Economic dispatch is performed with bulk energy storage with wind energy penetration in power systems allocating the generation levels to the units in the mix, so that the system load is served and most economically. The results obtained in previous research to solve for economic dispatch uses a linear cost function for a Direct Current …

Contributors
Gupta, Samir, Heydt, Gerald T, Vittal, Vijay, et al.
Created Date
2012

A new type of Ethernet switch based on the PCI Express switching fabric is being presented. The switch leverages PCI Express peer-to-peer communication protocol to implement high performance Ethernet packet switching. The advantages and challenges of using the PCI Express as the switching fabric are addressed. The PCI Express is a high-speed short-distance communication protocol largely used in motherboard-level interconnects. The total bandwidth of a PCI Express 3.0 link can reach as high as 256 gigabit per second (Gb/s) per 16 lanes. Concerns for PCI Express such as buffer speed, address mapping, Quality of Service and power consumption need to …

Contributors
Chen, Caiyi, Hui, Joseph, Reisslein, Martin, et al.
Created Date
2012

Power management plays a very important role in the current electronics industry. Battery powered and handheld applications require novel power management techniques to extend the battery life. Most systems have multiple voltage regulators to provide power sources to the different circuit blocks and/or sub-systems. Some of these voltage regulators are low dropout regulators (LDOs) which typically require output capacitors in the range of 1's to 10's of µF. The necessity of output capacitors occupies valuable board space and can add additional integrated circuit (IC) pin count. A high IC pin count can restrict LDOs for system-on-chip (SoC) solutions. The presented …

Contributors
Topp, Matthew, Bakkaloglu, Bertan, Thornton, Trevor, et al.
Created Date
2012