Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Date Range
2010 2018


This research start utilizing an efficient sparse inverse covariance matrix (precision matrix) estimation technique to identify a set of highly correlated discriminative perspectives between radical and counter-radical groups. A ranking system has been developed that utilizes ranked perspectives to map Islamic organizations on a set of socio-cultural, political and behavioral scales based on their web site corpus. Simultaneously, a gold standard ranking of these organizations was created through domain experts and compute expert-to-expert agreements and present experimental results comparing the performance of the QUIC based scaling system to another baseline method for organizations. The QUIC based algorithm not only outperforms ...

Contributors
Kim, Nyunsu, Davulcu, Hasan, Sen, Arunabha, et al.
Created Date
2018

Machine learning models convert raw data in the form of video, images, audio, text, etc. into feature representations that are convenient for computational process- ing. Deep neural networks have proven to be very efficient feature extractors for a variety of machine learning tasks. Generative models based on deep neural networks introduce constraints on the feature space to learn transferable and disentangled rep- resentations. Transferable feature representations help in training machine learning models that are robust across different distributions of data. For example, with the application of transferable features in domain adaptation, models trained on a source distribution can be applied ...

Contributors
Eusebio, Jose Miguel Ang, Panchanathan, Sethuraman, Davulcu, Hasan, et al.
Created Date
2018

Social Computing is an area of computer science concerned with dynamics of communities and cultures, created through computer-mediated social interaction. Various social media platforms, such as social network services and microblogging, enable users to come together and create social movements expressing their opinions on diverse sets of issues, events, complaints, grievances, and goals. Methods for monitoring and summarizing these types of sociopolitical trends, its leaders and followers, messages, and dynamics are needed. In this dissertation, a framework comprising of community and content-based computational methods is presented to provide insights for multilingual and noisy political social media content. First, a model ...

Contributors
Alzahrani, Sultan, Davulcu, Hasan, Corman, Steve R., et al.
Created Date
2018

The subliminal impact of framing of social, political and environmental issues such as climate change has been studied for decades in political science and communications research. Media framing offers an “interpretative package" for average citizens on how to make sense of climate change and its consequences to their livelihoods, how to deal with its negative impacts, and which mitigation or adaptation policies to support. A line of related work has used bag of words and word-level features to detect frames automatically in text. Such works face limitations since standard keyword based features may not generalize well to accommodate surface variations ...

Contributors
Alashri, Saud, Davulcu, Hasan, Desouza, Kevin C., et al.
Created Date
2018

In this research, I try to solve multi-class multi-label classication problem, where the goal is to automatically assign one or more labels(tags) to discussion topics seen in deepweb. I observed natural hierarchy in our dataset, and I used dierent techniques to ensure hierarchical integrity constraint on the predicted tag list. To solve `class imbalance' and `scarcity of labeled data' problems, I developed semisupervised model based on elastic search(ES) document relevance score. I evaluate our models using standard K-fold cross-validation method. Ensuring hierarchical integrity constraints improved F1 score by 11.9% over standard supervised learning, while our ES based semi-supervised learning model ...

Contributors
Patil, Revanth, Shakarian, Paulo, Doupe, Adam, et al.
Created Date
2018

The performance of most of the visual computing tasks depends on the quality of the features extracted from the raw data. Insightful feature representation increases the performance of many learning algorithms by exposing the underlying explanatory factors of the output for the unobserved input. A good representation should also handle anomalies in the data such as missing samples and noisy input caused by the undesired, external factors of variation. It should also reduce the data redundancy. Over the years, many feature extraction processes have been invented to produce good representations of raw images and videos. The feature extraction processes can ...

Contributors
Chandakkar, Parag Shridhar, Li, Baoxin, Yang, Yezhou, et al.
Created Date
2017

The media disperses a large amount of information daily pertaining to political events social movements, and societal conflicts. Media pertaining to these topics, no matter the format of publication used, are framed a particular way. Framing is used not for just guiding audiences to desired beliefs, but also to fuel societal change or legitimize/delegitimize social movements. For this reason, tools that can help to clarify when changes in social discourse occur and identify their causes are of great use. This thesis presents a visual analytics framework that allows for the exploration and visualization of changes that occur in social climate ...

Contributors
Steptoe, Michael, Maciejewski, Ross, Davulcu, Hasan, et al.
Created Date
2017

Computer Vision as a eld has gone through signicant changes in the last decade. The eld has seen tremendous success in designing learning systems with hand-crafted features and in using representation learning to extract better features. In this dissertation some novel approaches to representation learning and task learning are studied. Multiple-instance learning which is generalization of supervised learning, is one example of task learning that is discussed. In particular, a novel non-parametric k- NN-based multiple-instance learning is proposed, which is shown to outperform other existing approaches. This solution is applied to a diabetic retinopathy pathology detection problem eectively. In cases ...

Contributors
Venkatesan, Ragav, Li, Baoxin, Turaga, Pavan, et al.
Created Date
2017

Online learning platforms such as massive online open courses (MOOCs) and intelligent tutoring systems (ITSs) have made learning more accessible and personalized. These systems generate unprecedented amounts of behavioral data and open the way for predicting students’ future performance based on their behavior, and for assessing their strengths and weaknesses in learning. This thesis attempts to mine students’ working patterns using a programming problem solving system, and build predictive models to estimate students’ learning. QuizIT, a programming solving system, was used to collect students’ problem-solving activities from a lower-division computer science programming course in 2016 Fall semester. Differential mining techniques ...

Contributors
Mandal, Partho Pratim, Hsiao, I-Han, Davulcu, Hasan, et al.
Created Date
2017

Online social networks are the hubs of social activity in cyberspace, and using them to exchange knowledge, experiences, and opinions is common. In this work, an advanced topic modeling framework is designed to analyse complex longitudinal health information from social media with minimal human annotation, and Adverse Drug Events and Reaction (ADR) information is extracted and automatically processed by using a biased topic modeling method. This framework improves and extends existing topic modelling algorithms that incorporate background knowledge. Using this approach, background knowledge such as ADR terms and other biomedical knowledge can be incorporated during the text mining process, with ...

Contributors
Yang, Jian, Gonzalez, Graciela, Davulcu, Hasan, et al.
Created Date
2017