Skip to main content

ASU Electronic Theses and Dissertations

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at

Damage to the central nervous system due to spinal cord or traumatic brain injury, as well as degenerative musculoskeletal disorders such as arthritis, drastically impact the quality of life. Regeneration of complex structures is quite limited in mammals, though other vertebrates possess this ability. Lizards are the most closely related organism to humans that can regenerate de novo skeletal muscle, hyaline cartilage, spinal cord, vasculature, and skin. Progress in studying the cellular and molecular mechanisms of lizard regeneration has previously been limited by a lack of genomic resources. Building on the release of the genome of the green anole, <i>Anolis …

Hutchins, Elizabeth, Kusumi, Kenro, Rawls, Jeffrey A., et al.
Created Date

Sparsity has become an important modeling tool in areas such as genetics, signal and audio processing, medical image processing, etc. Via the penalization of l-1 norm based regularization, the structured sparse learning algorithms can produce highly accurate models while imposing various predefined structures on the data, such as feature groups or graphs. In this thesis, I first propose to solve a sparse learning model with a general group structure, where the predefined groups may overlap with each other. Then, I present three real world applications which can benefit from the group structured sparse learning technique. In the first application, I …

Yuan, Lei, Ye, Jieping, Wang, Yalin, et al.
Created Date