Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Date Range
2010 2019


The applications which use MEMS accelerometer have been on rise and many new fields which are using the MEMS devices have been on rise. The industry is trying to reduce the cost of production of these MEMS devices. These devices are manufactured using micromachining and the interface circuitry is manufactured using CMOS and the final product is integrated on to a single chip. Amount spent on testing of the MEMS devices make up a considerable share of the total final cost of the device. In order to save the cost and time spent on testing, researchers have been trying to …

Contributors
Jangala Naga, Naveen Sai, Ozev, Sule, Bakkaloglu, Bertan, et al.
Created Date
2014

The research objective is fully differential op-amp with common mode feedback, which are applied in filter, band gap, Analog Digital Converter (ADC) and so on as a fundamental component in analog circuit. Having modeled various defect and analyzed corresponding probability, defect library could be built after reduced defect simulation.Based on the resolution of microscope scan tool, all these defects are categorized into four groups of defects by both function and location, bias circuit defect, first stage amplifier defect, output stage defect and common mode feedback defect, separately. Each fault result is attributed to one of these four region defects.Therefore, analog …

Contributors
Lu, Zhijian, Ozev, Sule, Kiaei, Sayfe, et al.
Created Date
2014

Isolated DC/DC converters are used to provide electrical isolation between two supply domain systems. A fully integrated isolated DC/DC converter having no board-level components and fabricated using standard integrated circuits (IC) process is highly desirable in order to increase the system reliability and reduce costs. The isolation between the low-voltage side and high-voltage side of the converter is realized by a transformer that transfers energy while blocking the DC loop. The resonant mode power oscillator is used to enable high efficiency power transfer. The on-chip transformer is expected to have high coil inductance, high quality factors and high coupling coefficient …

Contributors
Zhao, Yao, Bakkaloglu, Bertan, Kiaei, Sayfe, et al.
Created Date
2014

Monitoring of air pollutants is critical for many applications and studies. In order to access air pollutants with high spatial and temporal resolutions, it is necessary to develop an affordable, small size and weight, low power, high sensitivity and selectivity, and wireless enable device that can provide real time monitoring of air pollutants. Three different kind of such devices are presented, they are targeting environmental pollutants such as volatile organic components (VOCs), nitrogen dioxide (NO2) and ozone. These devices employ innovative detection methods, such as quartz crystal tuning fork coated with molecularly imprinted polymer and chemical reaction induced color change …

Contributors
Chen, Cheng, Tao, Nongjian, Kiaei, Sayfe, et al.
Created Date
2014

Photovoltaic (PV) systems are affected by converter losses, partial shading and other mismatches in the panels. This dissertation introduces a sub-panel maximum power point tracking (MPPT) architecture together with an integrated CMOS current sensor circuit on a chip to reduce the mismatch effects, losses and increase the efficiency of the PV system. The sub-panel MPPT increases the efficiency of the PV during the shading and replaces the bypass diodes in the panels with an integrated MPPT and DC-DC regulator. For the integrated MPPT and regulator, the research developed an integrated standard CMOS low power and high common mode range Current-to-Digital …

Contributors
Marti-Arbona, Edgar, Kiaei, Sayfe, Bakkaloglu, Bertan, et al.
Created Date
2014

As residential photovoltaic (PV) systems become more and more common and widespread, their system architectures are being developed to maximize power extraction while keeping the cost of associated electronics to a minimum. An architecture that has become popular in recent years is the "DC optimizer" architecture, wherein one DC-DC converter is connected to the output of each PV module. The DC optimizer architecture has the advantage of performing maximum power-point tracking (MPPT) at the module level, without the high cost of using an inverter on each module (the "microinverter" architecture). This work details the design of a proposed DC optimizer. …

Contributors
Luster, Daniel, Ayyanar, Raja, Bakkaloglu, Bertan, et al.
Created Date
2014

A single solar cell provides close to 0.5 V output at its maximum power point, which is very low for any electronic circuit to operate. To get rid of this problem, traditionally multiple solar cells are connected in series to get higher voltage. The disadvantage of this approach is the efficiency loss for partial shading or mismatch. Even as low as 6-7% of shading can result in more than 90% power loss. Therefore, Maximum Power Point Tracking (MPPT) at single solar cell level is the most efficient way to extract power from solar cell. Power Management IC (MPIC) used to …

Contributors
Singh, Shrikant, Kiaei, Sayfe, Bakkaloglu, Bertan, et al.
Created Date
2015

The photovoltaic systems used to convert solar energy to electricity pose a multitude of design and implementation challenges, including energy conversion efficiency, partial shading effects, and power converter efficiency. Using power converters for Distributed Maximum Power Point Tracking (DMPPT) is a well-known architecture to significantly reduce power loss associated with mismatched panels. Sub-panel-level DMPPT is shown to have up to 14.5% more annual energy yield than panel-level DMPPT, and requires an efficient medium power converter. This research aims at implementing a highly efficient power management system at sub-panel level with focus on system cost and form-factor. Smaller form-factor motivates increased …

Contributors
Krishnan Achary, Kiran Kumar, Kitchen, Jennifer, Kiaei, Sayfe, et al.
Created Date
2015

The modern era of consumer electronics is dominated by compact, portable, affordable smartphones and wearable computing devices. Power management integrated circuits (PMICs) play a crucial role in on-chip power management, extending battery life and efficiency of integrated analog, radio-frequency (RF), and mixed-signal cores. Low-dropout (LDO) regulators are commonly used to provide clean supply for low voltage integrated circuits, where point-of-load regulation is important. In System-On-Chip (SoC) applications, digital circuits can change their mode of operation regularly at a very high speed, imposing various load transient conditions for the regulator. These quick changes of load create a glitch in LDO output …

Contributors
Desai, Chirag, Kiaei, Sayfe, Bakkaloglu, Bertan, et al.
Created Date
2016

Traditional wireless communication systems operate in duplexed modes i.e. using time division duplexing or frequency division duplexing. These methods can respectively emulate full duplex mode operation or realize full duplex mode operation with decreased spectral efficiency. This thesis presents a novel method of achieving full duplex operation by actively cancelling out the transmitted signal in pseudo-real time. With appropriate hardware, the algorithms and techniques used in this work can be implemented in real time without any knowledge of the channel or any training sequence. Convergence times of down to 1 ms can be achieved which is adequate for the coherence …

Contributors
Avasarala, Sanjay, Kiaei, Sayfe, Kitchen, Jennifer, et al.
Created Date
2016