Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Subject
Date Range
2010 2020


Sparsity has become an important modeling tool in areas such as genetics, signal and audio processing, medical image processing, etc. Via the penalization of l-1 norm based regularization, the structured sparse learning algorithms can produce highly accurate models while imposing various predefined structures on the data, such as feature groups or graphs. In this thesis, I first propose to solve a sparse learning model with a general group structure, where the predefined groups may overlap with each other. Then, I present three real world applications which can benefit from the group structured sparse learning technique. In the first application, I …

Contributors
Yuan, Lei, Ye, Jieping, Wang, Yalin, et al.
Created Date
2013

Random peptide microarrays are a powerful tool for both the treatment and diagnostics of infectious diseases. On the treatment side, selected random peptides on the microarray have either binding or lytic potency against certain pathogens cells, thus they can be synthesized into new antimicrobial agents, denoted as synbodies (synthetic antibodies). On the diagnostic side, serum containing specific infection-related antibodies create unique and distinct "pathogen-immunosignatures" on the random peptide microarray distinct from the healthy control serum, and this different mode of binding can be used as a more precise measurement than traditional ELISA tests. My thesis project is separated into these …

Contributors
Wang, Xiao, Johnston, Stephen Albert, Blattman, Joseph, et al.
Created Date
2013

Biological systems are complex in many dimensions as endless transportation and communication networks all function simultaneously. Our ability to intervene within both healthy and diseased systems is tied directly to our ability to understand and model core functionality. The progress in increasingly accurate and thorough high-throughput measurement technologies has provided a deluge of data from which we may attempt to infer a representation of the true genetic regulatory system. A gene regulatory network model, if accurate enough, may allow us to perform hypothesis testing in the form of computational experiments. Of great importance to modeling accuracy is the acknowledgment of …

Contributors
Verdicchio, Michael Paul, Kim, Seungchan, Baral, Chitta, et al.
Created Date
2013

This dissertation investigates the condition of skeletal muscle insulin resistance using bioinformatics and computational biology approaches. Drawing from several studies and numerous data sources, I have attempted to uncover molecular mechanisms at multiple levels. From the detailed atomistic simulations of a single protein, to datamining approaches applied at the systems biology level, I provide new targets to explore for the research community. Furthermore I present a new online web resource that unifies various bioinformatics databases to enable discovery of relevant features in 3D protein structures. Dissertation/Thesis

Contributors
Mielke, Clinton, Mandarino, Lawrence, Labaer, Joshua, et al.
Created Date
2013

Surgery as a profession requires significant training to improve both clinical decision making and psychomotor proficiency. In the medical knowledge domain, tools have been developed, validated, and accepted for evaluation of surgeons' competencies. However, assessment of the psychomotor skills still relies on the Halstedian model of apprenticeship, wherein surgeons are observed during residency for judgment of their skills. Although the value of this method of skills assessment cannot be ignored, novel methodologies of objective skills assessment need to be designed, developed, and evaluated that augment the traditional approach. Several sensor-based systems have been developed to measure a user's skill quantitatively, …

Contributors
Islam, Gazi, Li, Baoxin, Liang, Jianming, et al.
Created Date
2013

In blindness research, the corpus callosum (CC) is the most frequently studied sub-cortical structure, due to its important involvement in visual processing. While most callosal analyses from brain structural magnetic resonance images (MRI) are limited to the 2D mid-sagittal slice, we propose a novel framework to capture a complete set of 3D morphological differences in the corpus callosum between two groups of subjects. The CCs are segmented from whole brain T1-weighted MRI and modeled as 3D tetrahedral meshes. The callosal surface is divided into superior and inferior patches on which we compute a volumetric harmonic field by solving the Laplace's …

Contributors
Xu, Liang, Wang, Yalin, Maciejewski, Ross, et al.
Created Date
2013

Vertebrate genomes demonstrate a remarkable range of sizes from 0.3 to 133 gigabase pairs. The proliferation of repeat elements are a major genomic expansion. In particular, long interspersed nuclear elements (LINES) are autonomous retrotransposons that have the ability to "cut and paste" themselves into a host genome through a mechanism called target-primed reverse transcription. LINES have been called "junk DNA," "viral DNA," and "selfish" DNA, and were once thought to be parasitic elements. However, LINES, which diversified before the emergence of many early vertebrates, has strongly shaped the evolution of eukaryotic genomes. This thesis will evaluate LINE abundance, diversity and …

Contributors
May, Catherine Magdeline, Kusumi, Kenro, Gadau, Juergen, et al.
Created Date
2013

Photosynthesis is the primary source of energy for most living organisms. Light harvesting complexes (LHC) play a vital role in harvesting sunlight and passing it on to the protein complexes of the electron transfer chain which create the electrochemical potential across the membrane which drives ATP synthesis. phycobilisomes (PBS) are the most important LHCs in cyanobacteria. PBS is a complex of three light harvesting proteins: phycoerythrin (PE), phycocyanin (PC) and allophycocyanin (APC). This work has been done on a newly discovered cyanobacterium called Leptolyngbya Heron Island (L.HI). This study has three important goals: 1) Sequencing, assembly and annotation of the …

Contributors
Paul, Robin, Fromme, Petra, Ros, Alexandra, et al.
Created Date
2014

Genomic structural variation (SV) is defined as gross alterations in the genome broadly classified as insertions/duplications, deletions inversions and translocations. DNA sequencing ushered structural variant discovery beyond laboratory detection techniques to high resolution informatics approaches. Bioinformatics tools for computational discovery of SVs however are still missing variants in the complex cancer genome. This study aimed to define genomic context leading to tool failure and design novel algorithm addressing this context. Methods: The study tested the widely held but unproven hypothesis that tools fail to detect variants which lie in repeat regions. Publicly available 1000-Genomes dataset with experimentally validated variants was …

Contributors
Shetty, Sheetal Vittal, Dinu, Valentin, Bussey, Kimberly, et al.
Created Date
2014

The processes of a human somatic cell are very complex with various genetic mechanisms governing its fate. Such cells undergo various genetic mutations, which translate to the genetic aberrations that we see in cancer. There are more than 100 types of cancer, each having many more subtypes with aberrations being unique to each. In the past two decades, the widespread application of high-throughput genomic technologies, such as micro-arrays and next-generation sequencing, has led to the revelation of many such aberrations. Known types and subtypes can be readily identified using gene-expression profiling and more importantly, high-throughput genomic datasets have helped identify …

Contributors
Yellapantula, Venkata Divya Teja, Dinu, Valentin, Scotch, Matthew, et al.
Created Date
2014