Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Wide spread adoption of photovoltaic technology is limited by cost. Developing photovoltaics based on low-cost materials and processing techniques is one strategy for reducing the cost of electricity generated by photovoltaics. With this in mind, novel porphyrin and porphyrin-fullerene electropolymers have been developed here at Arizona State University. Porphyrins are attractive for inclusion in the light absorbing layer of photovoltaics due to their high absorption coefficients (on the order of 105 cm-1) and porphyrin-fullerene dyads are attractive for use in photovoltaics due to their ability to produce ultrafast photoinduced charge separation (on the order of 10-15 s). The focus of …

Contributors
Bridgewater, James Ward, Gust, Devens, Tao, Nongjian, et al.
Created Date
2014

Cavitation erosion is a significant cause of wear in marine components, such as impellers, propellers or rudders. While the erosion process has been widely studied on metals, the effect of cavitation on polymers is not well-understood. The stress response in metals differs greatly from that of polymers, e.g. rate and temperature effects are far more important, thus damage and wear mechanisms of polymers under cavitating flows are significantly different. In this work, heat-driven failure caused by viscous dissipation and void nucleation resulting from tensile stresses arising from stress wave reflections are investigated as two possible material failure mechanisms. As a …

Contributors
Panwar, Ajay, Oswald, Jay, Dooley, Kevin, et al.
Created Date
2015

Finite element simulations modeling the hydrodynamic impact loads subjected to an elastomeric coating were performed to develop an understanding of the performance and failure mechanisms of protective coatings for cavitating environments. In this work, two major accomplishments were achieved: 1) scaling laws were developed from hydrodynamic principles and numerical simulations to allow conversion of measured distributions of pressure peaks in a cavitating flow to distributions of microscopic impact loadings modeling individual bubble collapse events, and 2) a finite strain, thermo-mechanical material model for polyurea-based elastomers was developed using a logarithmic rate formulation and implemented into an explicit finite element code. …

Contributors
Liao, Xiao, Oswald, Jay, Liu, Yongming, et al.
Created Date
2016

Minimally invasive endovascular embolization procedures decrease surgery time, speed up recovery, and provide the possibility for more comprehensive treatment of aneurysms, arteriovenous malformations (AVMs), and hypervascular tumors. Liquid embolic agents (LEAs) are preferred over mechanical embolic agents, such as coils, because they achieve homogeneous filling of aneurysms and more complex angioarchitectures. The gold standard of commercially available LEAs is dissolved in dimethyl sulfoxide (DMSO), which has been associated with vasospasm and angiotoxicity. The aim of this study was to investigate amino acid substitution in an enzyme-degradable side group of an N-isopropylacrylamide (NIPAAm) copolymer for the development of a LEA that …

Contributors
Rosas Gomez, Karime Jocelyn, Vernon, Brent, Weaver, Jessica, et al.
Created Date
2019