Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Date Range
2010 2018


Prior work in literature has illustrated the benefits of using surge arrester as a way to improve the lighting performance of the substation and transmission line. Installing surge arresters would enhance the system reliability but it comes with an extra capital expenditure. This thesis provides simulation analysis to examine substation-specific applications of surge arrester as a way of determining the optimal, cost-effective placement of surge arresters. Four different surge arrester installation configurations are examined for the 500/230 kV Rudd substation which belongs to the utility, Salt River Project (SRP). The most efficient configuration is identified in this thesis. A new ...

Contributors
Xia, Qianxue, Karady, George, Ayyanar, Raja, et al.
Created Date
2018

Complex electronic systems include multiple power domains and drastically varying dynamic power consumption patterns, requiring the use of multiple power conversion and regulation units. High frequency switching converters have been gaining prominence in the DC-DC converter market due to smaller solution size (higher power density) and higher efficiency. As the filter components become smaller in value and size, they are unfortunately also subject to higher process variations and worse degradation profiles jeopardizing stable operation of the power supply. This dissertation presents techniques to track changes in the dynamic loop characteristics of the DC-DC converters without disturbing the normal mode of ...

Contributors
Beohar, Navankur, Bakkaloglu, Bertan, Ozev, Sule, et al.
Created Date
2017

The government support towards green energy sources for the better future of the planet has changed the perspective of the people towards the usage of green energy. Among renewables, solar is one of the important and easily accessible resources to convert energy from the sun directly into electricity and this system has gained fame since the past three decades. SRP has set up a 6.36 kW PV and 19.4 kWh battery system on the rooftop of Engineering Research Center (ERC). The system is grid-connected and ASU (Arizona State University) has developed two load banks with a minimum step of 72 ...

Contributors
Etha, Pavan, Karady, George, Heydt, Gerald, et al.
Created Date
2017

The dissertation encompasses the transformer-less single phase PV inverters for both the string and microinverter applications. Two of the major challenge with such inverters include the presence of high-frequency common mode leakage current and double line frequency power decoupling with reliable capacitors without compromising converter power density. Two solutions are presented in this dissertation: half-bridge voltage swing (HBVS) and dynamic dc link (DDCL) inverters both of which completely eliminates the ground current through topological improvement. In addition, through active power decoupling technique, the capacitance requirement is reduced for both, thus achieving an all film-capacitor based solution with higher reliability. Also ...

Contributors
Roy, Jinia, Ayyanar, Raja, Karady, George, et al.
Created Date
2017

In recent years, wide bandgap (WBG) devices enable power converters with higher power density and higher efficiency. On the other hand, smart grid technologies are getting mature due to new battery technology and computer technology. In the near future, the two technologies will form the next generation of smart grid enabled by WBG devices. This dissertation deals with two applications: silicon carbide (SiC) device used for medium voltage level interface (7.2 kV to 240 V) and gallium nitride (GaN) device used for low voltage level interface (240 V/120 V). A 20 kW solid state transformer (SST) is designed with 6 ...

Contributors
Yao, Tong, Ayyanar, Raja, Karady, George, et al.
Created Date
2017

The growth of energy demands in recent years has been increasing faster than the expansion of transmission facility construction. This tendency cooperating with the continuous investing on the renewable energy resources drives the research, development, and construction of HVDC projects to create a more reliable, affordable, and environmentally friendly power grid. Constructing the hybrid AC-HVDC grid is a significant move in the development of the HVDC techniques; the form of dc system is evolving from the point-to-point stand-alone dc links to the embedded HVDC system and the multi-terminal HVDC (MTDC) system. The MTDC is a solution for the renewable energy ...

Contributors
Yu, Jicheng, Karady, George, Qin, Jiangchao, et al.
Created Date
2017

With the penetration of distributed renewable energy and the development of semiconductor technology, power electronic devices could be utilized to interface re- newable energy generation and the distribution power grid. However, when directly connected to the power grid, the semiconductors inside the power electronic devices could be vulnerable to the power system transient, especially to lightning strikes. The work of this research focuses on the insulation coordination of power elec- tronic devices connected directly to the power distribution system. The Solid State Transformer (SST) in Future Renewable Electric Energy Delivery and Management (FREEDM) system could be a good example for ...

Contributors
Rong, Xuening, Karady, George G, Heydt, Gerald T, et al.
Created Date
2017

Two major challenges in the transformer-less, single-phase PV string inverters are common mode leakage currents and double-line-frequency power decoupling. In the proposed doubly-grounded inverter topology with innovative active-power-decoupling approach, both of these issues are simultaneously addressed. The topology allows the PV negative terminal to be directly connected to the neutral, thereby eliminating the common-mode ground-currents. The decoupling capacitance requirement is minimized by a dynamically-variable dc-link with large voltage swing, allowing an all-film-capacitor implementation. Furthermore, the use of wide-bandgap devices enables the converter operation at higher switching frequency, resulting in smaller magnetic components. The operating principles, design and optimization, and control ...

Contributors
Xia, Yinglai, Ayyanar, Raja, Karady, George, et al.
Created Date
2017

Electric power system security assessment is one of the most important requirements for operational and resource planning of the bulk power system ensuring safe operation of the power system for all credible contingencies. This deterministic approach usually provides a conservative criterion and can result in expensive bulk system expansion plans or conservative operating limits. Furthermore, with increased penetration of converter-based renewable generation in the electric grid, the dynamics of the grid are changing. In addition, the variability and intermittency associated with the renewable energy sources introduce uncertainty in the electricity grid. Since security margins have direct economic impact on the ...

Contributors
Datta, Sohom, Vittal, Vijay, Undrill, John, et al.
Created Date
2017

This thesis investigates different unidirectional topologies for the on-board charger in an electric vehicle and proposes soft-switching solutions in both the AC/DC and DC/DC stage of the converter with a power rating of 3.3 kW. With an overview on different charger topologies and their applicability with respect to the target specification a soft-switching technique to reduce the switching losses of a single phase boost-type PFC is proposed. This work is followed by a modification to the popular soft-switching topology, the dual active bridge (DAB) converter for application requiring unidirectional power flow. The topology named as the semi-dual active bridge (S-DAB) ...

Contributors
Kulasekaran, Siddharth, Ayyanar, Raja, Karady, George, et al.
Created Date
2017