Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Date Range
2010 2018


Three-dimensional (3D) inductors with square, hexagonal and octagonal geometries have been designed and simulated in ANSYS HFSS. The inductors have been designed on Silicon substrate with through-hole via with different width, spacing and thickness. Spice modeling has been done in Agilent ADS and comparison has been made with results of custom excel based calculator and HFSS simulation results. Single ended quality factor was measured as 12.97 and differential ended quality factor was measured as 15.96 at a maximum operational frequency of 3.65GHz. The single ended and differential inductance was measured as 2.98nH and 2.88nH respectively at this frequency. Based on …

Contributors
Abbey, Hemanshu, Bakkaloglu, Bertan, Kiaei, Sayfe, et al.
Created Date
2012

Voltage Control Oscillator (VCO) is one of the most critical blocks in Phase Lock Loops (PLLs). LC-tank VCOs have a superior phase noise performance, however they require bulky passive resonators and often calibration architectures to overcome their limited tuning range. Ring oscillator (RO) based VCOs are attractive for digital technology applications owing to their ease of integration, small die area and scalability in deep submicron processes. However, due to their supply sensitivity and poor phase noise performance, they have limited use in applications demanding low phase noise floor, such as wireless or optical transceivers. Particularly, out-of-band phase noise of RO-based …

Contributors
Min, Seungkee, Kiaei, Sayfe, Bakkaloglu, Bertan, et al.
Created Date
2011

ABSTRACT To meet stringent market demands, manufacturers must produce Radio Frequency (RF) transceivers that provide wireless communication between electronic components used in consumer products at extremely low cost. Semiconductor manufacturers are in a steady race to increase integration levels through advanced system-on-chip (SoC) technology. The testing costs of these devices tend to increase with higher integration levels. As the integration levels increase and the devices get faster, the need for high-calibre low cost test equipment become highly dominant. However testing the overall system becomes harder and more expensive. Traditionally, the transceiver system is tested in two steps utilizing high-calibre RF …

Contributors
Sreenivassan, Aiswariya, Ozev, Sule, Kiaei, Sayfe, et al.
Created Date
2011

Pulse Density Modulation- (PDM-) based class-D amplifiers can reduce non-linearity and tonal content due to carrier signal in Pulse Width Modulation - (PWM-) based amplifiers. However, their low-voltage analog implementations also require a linear- loop filter and a quantizer. A PDM-based class-D audio amplifier using a frequency-domain quantization is presented in this paper. The digital-intensive frequency domain approach achieves high linearity under low-supply regimes. An analog comparator and a single-bit quantizer are replaced with a Current-Controlled Oscillator- (ICO-) based frequency discriminator. By using the ICO as a phase integrator, a third-order noise shaping is achieved using only two analog integrators. …

Contributors
Lee, Junghan, Bakkaloglu, Bertan, Kiaei, Sayfe, et al.
Created Date
2011

Redundant Binary (RBR) number representations have been extensively used in the past for high-throughput Digital Signal Processing (DSP) systems. Data-path components based on this number system have smaller critical path delay but larger area compared to conventional two's complement systems. This work explores the use of RBR number representation for implementing high-throughput DSP systems that are also energy-efficient. Data-path components such as adders and multipliers are evaluated with respect to critical path delay, energy and Energy-Delay Product (EDP). A new design for a RBR adder with very good EDP performance has been proposed. The corresponding RBR parallel adder has a …

Contributors
Mahadevan, Rupa, Chakrabarti, Chaitali, Kiaei, Sayfe, et al.
Created Date
2011

A dual-channel directional digital hearing aid (DHA) front-end using a fully differential difference amplifier (FDDA) based Microphone interface circuit (MIC) for a capacitive Micro Electro Mechanical Systems (MEMS) microphones and an adaptive-power analog font end (AFE) is presented. The Microphone interface circuit based on FDDA converts the capacitance variations into voltage signal, achieves a noise of 32 dB SPL (sound pressure level) and an SNR of 72 dB, additionally it also performs single to differential conversion allowing for fully differential analog signal chain. The analog front-end consists of 40dB VGA and a power scalable continuous time sigma delta ADC, with …

Contributors
Naqvi, Syed Roomi, Kiaei, Sayfe, Bakkaloglu, Bertan, et al.
Created Date
2011

Sensing and controlling current flow is a fundamental requirement for many electronic systems, including power management (DC-DC converters and LDOs), battery chargers, electric vehicles, solenoid positioning, motor control, and power monitoring. Current Shunt Monitor (CSM) systems have various applications for precise current monitoring of those aforementioned applications. CSMs enable current measurement across an external sense resistor (RS) in series to current flow. Two different types of CSMs designed and characterized in this paper. First design used direct current reading method and the other design used indirect current reading method. Proposed CSM systems can sense power supply current ranging from 1mA …

Contributors
Yeom, Hyunsoo, Bakkaloglu, Bertan, Kiaei, Sayfe, et al.
Created Date
2011

A dual-channel directional digital hearing aid (DHA) front end using Micro Electro Mechanical System (MEMS) microphones and an adaptive-power analog processing signal chain is presented. The analog front end consists of a double differential amplifier (DDA) based capacitance to voltage conversion circuit, 40dB variable gain amplifier (VGA) and a continuous time sigma delta analog to digital converter (CT - ΣΔ ADC). Adaptive power scaling of the 4th order CT - ΣΔ achieves 68dB SNR at 120μW, which can be scaled down to 61dB SNR at 67μW. This power saving will increse the battery life of the DHA. Dissertation/Thesis

Contributors
Deligoz, Ilker, Kiaei, Sayfe, Bakkaloglu, Bertan, et al.
Created Date
2010

ABSTRACT Ongoing research into wireless transceivers in the 60 GHz band is required to address the demand for high data rate communications systems at a frequency where signal propagation is challenging even over short ranges. This thesis proposes a mixer architecture in Complementary Metal Oxide Semiconductor (CMOS) technology that uses a voltage controlled oscillator (VCO) operating at a fractional multiple of the desired output signal. The proposed topology is different from conventional subharmonic mixing in that the oscillator phase generation circuitry usually required for such a circuit is unnecessary. Analysis and simulations are performed on the proposed mixer circuit in …

Contributors
Martino, Todd Jeffrey, Kiaei, Sayfe, Bakkaloglu, Bertan, et al.
Created Date
2010