Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Status
  • Public
Date Range
2010 2019


Semi-supervised learning (SSL) is sub-field of statistical machine learning that is useful for problems that involve having only a few labeled instances with predictor (X) and target (Y) information, and abundance of unlabeled instances that only have predictor (X) information. SSL harnesses the target information available in the limited labeled data, as well as the information in the abundant unlabeled data to build strong predictive models. However, not all the included information is useful. For example, some features may correspond to noise and including them will hurt the predictive model performance. Additionally, some instances may not be as relevant to …

Contributors
Gaw, Nathan, Li, Jing, Wu, Teresa, et al.
Created Date
2019

Image-based process monitoring has recently attracted increasing attention due to the advancement of the sensing technologies. However, existing process monitoring methods fail to fully utilize the spatial information of images due to their complex characteristics including the high dimensionality and complex spatial structures. Recent advancement of the unsupervised deep models such as a generative adversarial network (GAN) and generative adversarial autoencoder (AAE) has enabled to learn the complex spatial structures automatically. Inspired by this advancement, we propose an anomaly detection framework based on the AAE for unsupervised anomaly detection for images. AAE combines the power of GAN with the variational …

Contributors
YEH, HUAI-MING, Yan, Hao, Pan, Rong, et al.
Created Date
2019

With the development of computer and sensing technology, rich datasets have become available in many fields such as health care, manufacturing, transportation, just to name a few. Also, data come from multiple heterogeneous sources or modalities. This is a common phenomenon in health care systems. While multi-modality data fusion is a promising research area, there are several special challenges in health care applications. (1) The integration of biological and statistical model is a big challenge; (2) It is commonplace that data from various modalities is not available for every patient due to cost, accessibility, and other reasons. This results in …

Contributors
Liu, Xiaonan, Li, Jing, Wu, Teresa, et al.
Created Date
2019

Transfer learning is a sub-field of statistical modeling and machine learning. It refers to methods that integrate the knowledge of other domains (called source domains) and the data of the target domain in a mathematically rigorous and intelligent way, to develop a better model for the target domain than a model using the data of the target domain alone. While transfer learning is a promising approach in various application domains, my dissertation research focuses on the particular application in health care, including telemonitoring of Parkinson’s Disease (PD) and radiomics for glioblastoma. The first topic is a Mixed Effects Transfer Learning …

Contributors
Yoon, Hyunsoo, Li, Jing, Wu, Teresa, et al.
Created Date
2018

Mathematical modeling and decision-making within the healthcare industry have given means to quantitatively evaluate the impact of decisions into diagnosis, screening, and treatment of diseases. In this work, we look into a specific, yet very important disease, the Alzheimer. In the United States, Alzheimer’s Disease (AD) is the 6th leading cause of death. Diagnosis of AD cannot be confidently confirmed until after death. This has prompted the importance of early diagnosis of AD, based upon symptoms of cognitive decline. A symptom of early cognitive decline and indicator of AD is Mild Cognitive Impairment (MCI). In addition to this qualitative test, …

Contributors
Camarena, Raquel, Pedrielli, Giulia, Li, Jing, et al.
Created Date
2018

Technology advancements in diagnostic imaging, smart sensing, and health information systems have resulted in a data-rich environment in health care, which offers a great opportunity for Precision Medicine. The objective of my research is to develop data fusion and system informatics approaches for quality and performance improvement of health care. In my dissertation, I focus on three emerging problems in health care and develop novel statistical models and machine learning algorithms to tackle these problems from diagnosis to care to system-level decision-making. The first topic is diagnosis/subtyping of migraine to customize effective treatment to different subtypes of patients. Existing clinical …

Contributors
Si, Bing, Li, Jing, Montgomery, Douglas, et al.
Created Date
2018

Under different environmental conditions, the relationship between the design and operational variables of a system and the system’s performance is likely to vary and is difficult to be described by a single model. The environmental variables (e.g., temperature, humidity) are not controllable while the variables of the system (e.g. heating, cooling) are mostly controllable. This phenomenon has been widely seen in the areas of building energy management, mobile communication networks, and wind energy. To account for the complicated interaction between a system and the multivariate environment under which it operates, a Sparse Partitioned-Regression (SPR) model is proposed, which automatically searches …

Contributors
Ning, Shuluo, Li, Jing, Wu, Teresa, et al.
Created Date
2018

In healthcare facilities, health information systems (HISs) are used to serve different purposes. The radiology department adopts multiple HISs in managing their operations and patient care. In general, the HISs that touch radiology fall into two categories: tracking HISs and archive HISs. Electronic Health Records (EHR) is a typical tracking HIS, which tracks the care each patient receives at multiple encounters and facilities. Archive HISs are typically specialized databases to store large-size data collected as part of the patient care. A typical example of an archive HIS is the Picture Archive and Communication System (PACS), which provides economical storage and …

Contributors
Wang, Kun, Li, Jing, Wu, Teresa, et al.
Created Date
2018

Modern, advanced statistical tools from data mining and machine learning have become commonplace in molecular biology in large part because of the “big data” demands of various kinds of “-omics” (e.g., genomics, transcriptomics, metabolomics, etc.). However, in other fields of biology where empirical data sets are conventionally smaller, more traditional statistical methods of inference are still very effective and widely used. Nevertheless, with the decrease in cost of high-performance computing, these fields are starting to employ simulation models to generate insights into questions that have been elusive in the laboratory and field. Although these computational models allow for exquisite control …

Contributors
Seto, Christian, Pavlic, Theodore, Li, Jing, et al.
Created Date
2018

Major Depression, clinically called Major Depressive Disorder, is a mood disorder that affects about one eighth of population in US and is projected to be the second leading cause of disability in the world by the year 2020. Recent advances in biotechnology have enabled us to collect a great variety of data which could potentially offer us a deeper understanding of the disorder as well as advancing personalized medicine. This dissertation focuses on developing methods for three different aspects of predictive analytics related to the disorder: automatic diagnosis, prognosis, and prediction of long-term treatment outcome. The data used for each …

Contributors
Nie, Zhi, Ye, Jieping, He, Jingrui, et al.
Created Date
2017