Skip to main content

ASU Electronic Theses and Dissertations

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at

Small wireless cells have the potential to overcome bottlenecks in wireless access through the sharing of spectrum resources. A novel access backhaul network architecture based on a Smart Gateway (Sm-GW) between the small cell base stations, e.g., LTE eNBs, and the conventional backhaul gateways, e.g., LTE Servicing/Packet Gateways (S/P-GWs) has been introduced to address the bottleneck. The Sm-GW flexibly schedules uplink transmissions for the eNBs. Based on software defined networking (SDN) a management mechanism that allows multiple operator to flexibly inter-operate via multiple Sm-GWs with a multitude of small cells has been proposed. This dissertation also comprehensively survey the studies …

Thyagaturu, Akhilesh Thyagaturu, Reisslein, Martin, Seeling, Patrick, et al.
Created Date

LTE-Advanced networks employ random access based on preambles transmitted according to multi-channel slotted Aloha principles. The random access is controlled through a limit <italic>W</italic> on the number of transmission attempts and a timeout period for uniform backoff after a collision. We model the LTE-Advanced random access system by formulating the equilibrium condition for the ratio of the number of requests successful within the permitted number of transmission attempts to those successful in one attempt. We prove that for <italic>W</italic>&le;8 there is only one equilibrium operating point and for <italic>W</italic>&ge;9 there are three operating points if the request load &rho; is …

Tyagi, Revak Raj, Reisslein, Martin, Tepedelenlioglu, Cihan, et al.
Created Date