Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Subject
Date Range
2011 2019


The finite supply of current energy production materials has created opportunities for the investigation of alternative energy sources in many fields. One example is the use of microorganisms in bioenergy applications, such as microbial fuel cells. Present in many types of environments, microorganisms with the ability to respire solid electron acceptors have become of increasing relevance to alternative energy and wastewater treatment research. In this dissertation, several aspects of anode respiration are investigated, with the goal of increasing the limited understanding of the mechanisms of electron transport through the use of advanced electrochemical methods. Biofilms of Geobacter sulfurreducens, the model …

Contributors
Yoho, Rachel, Torres, César I, Rittmann, Bruce E, et al.
Created Date
2016

Trichloroethene (TCE) is a ubiquitous soil and groundwater contaminant. The most common bioremediation approach for TCE relies on the process of reductive dechlorination by Dehalococcoides mccartyi. D. mccartyi use TCE, dichloroethene, and vinyl chloride as electron acceptors and hydrogen as an electron donor. At contaminated sites, reductive dechlorination is typically promoted by adding a fermentable substrate, which is broken down to short chain fatty acids, simple alcohols, and hydrogen. This study explored microbial chain elongation (MCE), instead of fermentation, to promote TCE reductive dechlorination. In MCE, microbes use simple substrates (e.g., acetate, ethanol) to build medium chain fatty acids and …

Contributors
Robles, Aide, Delgado, Anca G., Torres, César I., et al.
Created Date
2019

The objective of this study was to evaluate possible bioremediation strategy for aerobic aquifers by combining ZVI chemical reduction and microbial reductive dechlorination for TCE and ClO4-. To achieve this objective, continuous flow-through soil columns were used to test the hypothesis that bioaugmentation with dechlorinating enrichment cultures downstream of the ZVI injection can lead to complete reduction of TCE and ClO4- in aerobic aquifers. We obtained soil and groundwater from a Superfund site in Arizona. The experiments consisted of 205 cm3 columns packed with soil and ZVI, which fed 1025 cm3 columns packed with soil, biostimulated with fermentable substrates and …

Contributors
Rao, Shefali, Krajmalnik-Brown, Rosa, Delgado, Anca G., et al.
Created Date
2019

The goal of this research was to study the effect of dilution on ammonium and potassium removal from real hydrolyzed urine. The performance of two natural zeolites, clinoptilolite and chabazite, was studied and compared with the help of batch equilibrium experiments at four dilution levels: 100%, 10%, 1% and 0.1% (urine volume/total solution volume). Further, the sorption behavior of other exchangeable ions (sodium, calcium and magnesium) in clinoptilolite and chabazite was studied to improve the understanding of ion exchange stoichiometry. Ammonium and potassium removal were highest at undiluted level in samples treated with clinoptilolite. This is a key finding as …

Contributors
Regmi, Urusha, Boyer, Treavor H, Delgado, Anca G, et al.
Created Date
2019

Mineral weathering and industrial activities cause elevated concentration of hexavalent chromium (Cr(VI)) in groundwater, and this poses potential health concern (>10 ppb) to southwestern USA. The conversion of Cr(VI) to Cr(III) – a fairly soluble and non-toxic form at typical pH of groundwater is an effective method to control the mobility and carcinogenic effects of Cr(VI). In-situ chemical reduction using SnCl2 was investigated to initiate this redox process using jar testing with buffered ultrapure water and native Arizona groundwater spiked with varying Cr(VI) concentrations. Cr(VI) transformation by SnCl2 is super rapid (<60 seconds) and depends upon the molar dosage of …

Contributors
Nguyen, Duong Thanh, Westerhoff, Paul K, Delgado, Anca G, et al.
Created Date
2019

The built environment is responsible for a significant portion of global waste generation. Construction and demolition (C&D) waste requires significant landfill areas and costs billions of dollars. New business models that reduce this waste may prove to be financially beneficial and generally more sustainable. One such model is referred to as the “Circular Economy” (CE), which promotes the efficient use of materials to minimize waste generation and raw material consumption. CE is achieved by maximizing the life of materials and components and by reclaiming the typically wasted value at the end of their life. This thesis identifies the potential opportunities …

Contributors
Aldaaja, Mohammad, El Asmar, Mounir, Buch, Rajesh, et al.
Created Date
2019

Widespread use of chlorinated solvents for commercial and industrial purposes makes co-occurring contamination by 1,1,1-trichloroethane (TCA), trichloroethene (TCE), and 1,4-dioxane (1,4-D) a serious problem for groundwater. TCE and TCA often are treated by reductive dechlorination, while 1,4-D resists reductive treatment. Aerobic bacteria are able to oxidize 1,4-D, but the biological oxidation of 1,4-D could be inhibited TCA, TCE, and their reductive transformation products. To overcome the challenges from co-occurring contamination, I propose a two-stage synergistic system. First, anaerobic reduction of the chlorinated hydrocarbons takes place in a H2-based hollow-fiber “X-film” (biofilm or catalyst-coated film) reactor (MXfR), where “X-film” can be …

Contributors
LUO, YIHAO, Rittmann, Bruce E, Rittmann, Bruce E, et al.
Created Date
2018

This dissertation critically evaluated methodologies and devices for assessing and protecting the health of human populations, with particular emphasis on groundwater remediation and the use of wastewater-based epidemiology (WBE) to inform population health. A meta-analysis and assessment of laboratory-scale treatability studies for removing chlorinated solvents from groundwater found that sediment microcosms operated as continuous-flow columns are preferable to batch bottles when seeking to emulate with high fidelity the complex conditions prevailing in the subsurface in contaminated aquifers (Chapter 2). Compared to monitoring at the field-scale, use of column microcosms also showed (i) improved chemical speciation, and (ii) qualitative predictability of …

Contributors
Driver, Erin, Halden, Rolf, Conroy-Ben, Otakuye, et al.
Created Date
2018

One of the two objectives of this dissertation is an investigation into the possible correlation between rainfall events and increased levels of E. coli and Mycobacterium using an existing data set. The literature states that levels of microbial concentrations do increase after rainfall events, but there are no studies to indicate this correlation applies in any Arizona water systems. The data analyzed for the bacterial concentrations project suggested the possibility of a correlation along one river but it is not conclusive to state that any correlation exists between rainfall events and the microbial concentration for many other sites included in …

Contributors
Buell, Andrew, Fox, Peter, Abbaszadegan, Morteza, et al.
Created Date
2018

C.C. Cragin Reservoir’s location in the Coconino National Forest, Arizona makes it prone to wild fire. This study focused on the potential impacts of such a wild fire on the reservoir’s annual thermal stratification cycle impacts and water quality. The annual thermal stratification cycle impacted the reservoir’s water quality by increasing hypolimnion concentrations of magnesium, iron, turbidity, and specific ultraviolet absorbance (SUVA) values, as well as resulting in the hypolimnion having decreased dissolved oxygen concentrations during stratified months. The scarification process did not affect the dissolved organic carbon (DOC) concentrations in the reservoir or the total/dissolved nitrogen and phosphorous concentrations. …

Contributors
Flatebo, Theodore, Westerhoff, Paul K, Fox, Peter, et al.
Created Date
2018