Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Date Range
2011 2018


With the growth of global population, the demand for sustainable infrastructure is significantly increasing. Substructures with appropriate materials are required to be built in or above soil that can support the massive volume of construction demand. However, increased structural requirements often require ground improvement to increase the soil capacity. Moreover, certain soils are prone to liquefaction during an earthquake, which results in significant structural damage and loss of lives. While various soil treatment methods have been developed in the past to improve the soil’s load carrying ability, most of these traditional treatment methods have been found either hazardous and may …

Contributors
Yang, Pu, Neithalath, Narayanan, Kavazanjian, Edward, et al.
Created Date
2018

Nanolaminate materials are layered composites with layer thickness ≤ 100 nm. They exhibit unique properties due to their small length scale, the presence of a high number of interfaces and the effect of imposed constraint. This thesis focuses on the mechanical behavior of Al/SiC nanolaminates. The high strength of ceramics combined with the ductility of Al makes this combination desirable. Al/SiC nanolaminates were synthesized through magnetron sputtering and have an overall thickness of ~ 20 μm which limits the characterization techniques to microscale testing methods. A large amount of work has already been done towards evaluating their mechanical properties under …

Contributors
Singh, Somya, Chawla, Nikhilesh, Neithalath, Narayanan, et al.
Created Date
2018

Being a remarkably versatile and inexpensive building material, concrete has found tremendous use in development of modern infrastructure and is the most widely used material in the world. Extensive research in the field of concrete has led to the development of a wide array of concretes with applications ranging from building of skyscrapers to paving of highways. These varied applications require special cementitious composites which can satisfy the demand for enhanced functionalities such as high strength, high durability and improved thermal characteristics among others. The current study focuses on the fundamental understanding of such functional composites, from their microstructural design …

Contributors
Arora, Aashay, Neithalath, Narayanan, Rajan, Subramaniam, et al.
Created Date
2018

Phase change materials (PCMs) are combined sensible-and-latent thermal energy storage materials that can be used to store and dissipate energy in the form of heat. PCMs incorporated into wall-element systems have been well-studied with respect to energy efficiency of building envelopes. New applications of PCMs in infrastructural concrete, e.g., for mitigating early-age cracking and freeze-and-thaw induced damage, have also been proposed. Hence, the focus of this dissertation is to develop a detailed understanding of the physic-chemical and thermo-mechanical characteristics of cementitious systems and novel coating systems for wall-elements containing PCM. The initial phase of this work assesses the influence of …

Contributors
Aguayo, Matthew Joseph, Neithalath, Narayanan, Rajan, Subramaniam, et al.
Created Date
2018

Asphalt binder is a complex viscoelastic hydrocarbon, whose performance depends upon interaction between its physical and chemical properties, both of which are equally important to the successful understanding of the material. Researchers have proposed various models linking linear viscoelastic (LVE) and microstructural parameters. However, none of these parameters provide insight into the relationship in the non- linear viscoelastic NLVE domain. The main goals of this dissertation are two fold. The first goal is to utilize the technique of Laser Desorption Mass Spectroscopy (LDMS) to relate the molecular structure of asphalt binders to its viscoelastic properties. The second goal of the …

Contributors
Gundla, Akshay, Underwood, Benjamin S, Kaloush, Kamil E, et al.
Created Date
2018

Concrete is relatively brittle, and its tensile strength is typically only about one-tenth of its compressive strength. Regular concrete is therefore normally uses reinforcement steel bars to increase the tensile strength. It is becoming increasingly popular to use random distributed fibers as reinforcement and polymeric fibers is once such kind. In the case of polymeric fibers, due to hydrophobicity and lack of any chemical bond between the fiber and matrix, the weak interface zone limits the ability of the fibers to effectively carry the load that is on the matrix phase. Depending on the fiber’s surface asperity, shape, chemical nature, …

Contributors
Tiwari, Sanchay Sushil, Mobasher, Barzin, Neithalath, Narayanan, et al.
Created Date
2018

This study explores the possibility of two matrices containing metallic particulates to act as smart materials by sensing of strain due to the presence of the conducting particles in the matrix. The first matrix is a regular Portland cement-based one while the second is a novel iron-based, carbonated binder developed at ASU. Four different iron replacement percentages by volume (10%, 20%, 30% and 40%) in a Portland cement matrix were selected, whereas the best performing iron carbonate matrix developed was used. Electrical impedance spectroscopy was used to obtain the characteristic Nyquist plot before and after application of flexural load. Electrical …

Contributors
Chowdhury, Swaptik, Neithalath, Narayanan, Rajan, Subramaniam D, et al.
Created Date
2017

The concept of Creep is a term used to define the tendency of stressed materials to develop an increasing strain through time under a sustained load, thus having an increase in deflection or having an elongation with time in relation to the short term strain. While the subject of compression creep of concrete is well developed, use of concrete under tension loads has been limited at best due to brittleness of concrete. However with the advent of using fiber reinforced concrete, more and more applications where concrete is expected to carry tensile loads due to incorporation of fibers is gaining …

Contributors
Gohel, Megha Rajendrakumar, Mobasher, Barzin, Dharmarajan, Subramaniam, et al.
Created Date
2017

Pultrusion manufacturing technique stands at the forefront for efficient production of continuous, uniform concrete composites for use in large scale structural applications. High volume and low labor, among other benefits such as improved impregnation and better sample consistency, stand as some of the crucial advances found in automated pultrusion. These advantages introduce textile reinforced concrete (TRC) composites as a potential surrogate for wood, light gauge steel, and other common structural materials into an ever changing and broadening market of industrial grade structural sections. With the potential modifications of textile geometry, textile type, section geometry, and connection type, the options presented …

Contributors
Bauchmoyer, Jacob MacGregor, Mobasher, Barzin, Rajan, Subramaniam, et al.
Created Date
2017

The main objective of this study is to investigate the effect of polypropylene fiber morphology on the tensile response of cementitious composites. Two proprietary polypropylene fibers manufactured by BASF – MAC 2200CB, a crimped monofilament macro fiber and MF40, a bundled multi filament polypropylene made up of 500 filaments,40-micron diameter each were compared. The stiff structure and crimped geometry of MAC 2200 CB was studied in comparison with the multifilament MF40, which provide a higher surface area and a bundled fiber effect. Uniaxial tensile tests were performed on individual fibers to study fiber strength and failure pattern at three different …

Contributors
Mehere, Himai Ashok, Mobasher, Barzin, Dharmarajan, Subramaniam, et al.
Created Date
2017

Sustainable materials and methods have achieved a pivotal role in the research plethora of the new age due to global warming. Cement production is responsible in contributing to 5% of global CO2 emissions. Complete replacement of cement by alkaline activation of aluminosilicate waste materials such as slag and fly ash is a major advancement towards reducing the adverse impacts of cement production. Comprehensive research has been done, to understand the optimized composition and hydration products. The focus of this dissertation is to understand the multiscale behavior ranging from early age properties, fundamental material structure, fracture and crack resistance properties, durability …

Contributors
Dakhane, Akash, Neithalath, Narayanan, Rajan, Subramaniam, et al.
Created Date
2016

Tall building developments are spreading across the globe at an ever-increasing rate (www.ctbuh.org). In 1982, the number of ‘tall buildings’ in North America was merely 1,701. This number rose to 26,053, in 2006. The global number of buildings, 200m or more in height, has risen from 286 to 602 in the last decade alone. This dissertation concentrates on design optimization of such, about-to-be modular, structures by implementing AISC 2010 design requirements. Along with a discussion on and classification of lateral load resisting systems, a few design optimization cases are also being studied. The design optimization results of full scale three …

Contributors
Unde, Yogesh Vinod, Rajan, Subramaniam, Neithalath, Narayanan, et al.
Created Date
2016

Composite materials are widely used in various structural applications, including within the automotive and aerospace industries. Unidirectional composite layups have replaced other materials such as metals due to composites’ high strength-to-weight ratio and durability. Finite-element (FE) models are actively being developed to model response of composite systems subjected to a variety of loads including impact loads. These FE models rely on an array of measured material properties as input for accuracy. This work focuses on an orthotropic plasticity constitutive model that has three components – deformation, damage and failure. The model relies on the material properties of the composite such …

Contributors
Schmidt, Nathan William, Rajan, Subramaniam, Neithalath, Narayanan, et al.
Created Date
2016

Composite materials are now beginning to provide uses hitherto reserved for metals in structural systems such as airframes and engine containment systems, wraps for repair and rehabilitation, and ballistic/blast mitigation systems. These structural systems are often subjected to impact loads and there is a pressing need for accurate prediction of deformation, damage and failure. There are numerous material models that have been developed to analyze the dynamic impact response of polymer matrix composites. However, there are key features that are missing in those models that prevent them from providing accurate predictive capabilities. In this dissertation, a general purpose orthotropic elasto-plastic …

Contributors
Hoffarth, Canio, Rajan, Subramaniam, Goldberg, Robert, et al.
Created Date
2016

As the demand of sustainable construction materials increases, use of fibers and textiles as partial or full reinforcement in concrete members present a tremendous opportunity. Proper characterization techniques and design guides for hybrid materials are therefore needed. This dissertation presents a comprehensive study on serviceability-based design of strain softening and strain hardening materials. Multiple experimental procedures are developed to document the nature of single crack localization and multiple cracking mechanisms in various fiber and fabric reinforced cement-based composites. In addition, strain rate effects on the mechanical properties are examined using a high speed servo-hydraulic tension test equipment. Significant hardening and …

Contributors
Yao, Yiming, Mobasher, Barzin, Underwood, Benjamin, et al.
Created Date
2016

This study employs a finite element method based modeling of cementitious composite microstructure to study the effect of presence of inclusions on the stress distribution and the constitutive response of the composite. A randomized periodic microstructure combined with periodic boundary conditions forms the base of the finite element models. Inclusion properties of quartz and light weight aggregates of size 600μm obtained from literature were made use of to study the effect of their material (including inclusion stiffness, stiffness of interfacial transition zone and matrix stiffening) and geometric properties (volume fraction of inclusion, particle size distribution of inclusion and thickness of …

Contributors
Maroli, Amit, Neithalath, Narayanan, Rajan, Subramanium, et al.
Created Date
2016

The motivation of this work is based on development of new construction products with strain hardening cementitious composites (SHCC) geared towards sustainable residential applications. The proposed research has three main objectives: automation of existing manufacturing systems for SHCC laminates; multi-level characterization of mechanical properties of fiber, matrix, interface and composites phases using servo-hydraulic and digital image correlation techniques. Structural behavior of these systems were predicted using ductility based design procedures using classical laminate theory and structural mechanics. SHCC sections are made up of thin sections of matrix with Portland cement based binder and fine aggregates impregnating continuous one-dimensional fibers in …

Contributors
Dey, Vikram, Mobasher, Barzin, Rajan, Subramaniam D., et al.
Created Date
2016

The need for sustainability in construction has encouraged scientists to develop novel environmentally friendly materials. The use of supplementary cementitious materials was one such initiative which aided in enhancing the fresh and hardened concrete properties. This thesis aims to explore the understanding of the early age rheological properties of such cementitious systems. The first phase of the work investigates the influence of supplementary cementitious materials (SCM) in combination with ordinary Portland cement (OPC) on the rheological properties of fresh paste with and without the effect of superplasticizers. Yield stress, plastic viscosity and storage modulus are the rheological parameters which were …

Contributors
Inbasekaran, Aditya, Neithalath, Narayanan, Rajan, Subramaniam, et al.
Created Date
2016

The fatigue resistance of asphalt concrete (AC) plays an important role in the service life of a pavement. For predicting the fatigue life of AC, there are several existing empirical and mechanistic models. However, the assessment and quantification of the ‘reliability’ of the predictions from these models is a substantial knowledge gap. The importance of reliability in AC material performance predictions becomes all the more important in light of limited monetary and material resources. The goal of this dissertation research is to address these shortcomings by developing a framework for incorporating reliability into the prediction of mechanical models for AC …

Contributors
Gudipudi, Padmini Priyadarsini, Underwood, Benjamin S, Kaloush, Kamil, et al.
Created Date
2016

A simplified bilinear moment-curvature model are derived based on the moment-curvature response generated from a parameterized stress-strain response of strain softening and or strain-hardening material by Dr. Barzin Mobasher and Dr. Chote Soranakom. Closed form solutions are developed for deflection calculations of determinate beams subjected to usual loading patterns at any load stage. The solutions are based on a bilinear moment curvature response characterized by the flexural crack initiation and ultimate capacity based on a deflection hardening behavior. Closed form equations for deflection calculation are presented for simply supported beams under three point bending, four point bending, uniform load, concentrated …

Contributors
Wang, Xinmeng, Mobasher, Barzin, Rajan, Subramaniam, et al.
Created Date
2015