Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Date Range
2010 2018


Flexible hybrid electronics (FHE) is emerging as a promising solution to combine the benefits of printed electronics and silicon technology. FHE has many high-impact potential areas, such as wearable applications, health monitoring, and soft robotics, due to its physical advantages, which include light weight, low cost and the ability conform to different shapes. However, physical deformations that can occur in the field lead to significant testing and validation challenges. For example, designers have to ensure that FHE devices continue to meet specs even when the components experience stress due to bending. Hence, physical deformation, which is hard to emulate, has …

Contributors
Gao, Hang, Ozev, Sule, Ogras, Umit Y, et al.
Created Date
2018

This work covers the design and implementation of a Parallel Doherty RF Power Amplifier in a GaN HEMT process for medium power macro-cell (16W) base station applications. This work improves the key parameters of a Doherty Power Amplifier including the peak and back-off efficiency, operational instantaneous bandwidth and output power by proposing a Parallel Doherty amplifier architecture. As there is a progression in the wireless communication systems from the first generation to the future 5G systems, there is ever increasing demand for higher data rates which means signals with higher peak-to-average power ratios (PAPR). The present modulation schemes require PAPRs …

Contributors
BHARDWAJ, SUMIT, Kitchen, Jennifer, Bakkaloglu, Bertan, et al.
Created Date
2018

This dissertation proposes and presents two different passive sigma-delta modulator zoom Analog to Digital Converter (ADC) architectures. The first ADC is fullydifferential, synthesizable zoom-ADC architecture with a passive loop filter for lowfrequency Built in Self-Test (BIST) applications. The detailed ADC architecture and a step by step process designing the zoom-ADC along with a synthesis tool that can target various design specifications are presented. The design flow does not rely on extensive knowledge of an experienced ADC designer. Two example set of BIST ADCs have been synthesized with different performance requirements in 65nm CMOS process. The first ADC achieves 90.4dB Signal …

Contributors
EROL, OSMAN EMIR, Ozev, Sule, Kitchen, Jennifer, et al.
Created Date
2018

As integrated technologies are scaling down, there is an increasing trend in the process,voltage and temperature (PVT) variations of highly integrated RF systems. Accounting for these variations during the design phase requires tremendous amount of time for prediction of RF performance and optimizing it accordingly. Thus, there is an increasing gap between the need to relax the RF performance requirements at the design phase for rapid development and the need to provide high performance and low cost RF circuits that function with PVT variations. No matter how care- fully designed, RF integrated circuits (ICs) manufactured with advanced technology nodes necessitate …

Contributors
Shafiee, Maryam, Ozev, Sule, Diaz, Rodolfo, et al.
Created Date
2018

Point of Load (PoL) converters are important components to the power distribution system in computer power supplies as well as automotive, space, nuclear, and medical electronics. These converters often require high output current capability, low form factor, and high conversion ratios (step-down) without sacrificing converter efficiency. This work presents hybrid silicon/gallium nitride (CMOS/GaN) power converter architectures as a solution for high-current, small form-factor PoL converters. The presented topologies use discrete GaN power devices and CMOS integrated drivers and controller loop. The presented power converters operate in the tens of MHz range to reduce the form factor by reducing the size …

Contributors
Hegde, Ashwath, Kitchen, Jennifer, Bakkaloglu, Bertan, et al.
Created Date
2018

Performance failure due to aging is an increasing concern for RF circuits. While most aging studies are focused on the concept of mean-time-to-failure, for analog circuits, aging results in continuous degradation in performance before it causes catastrophic failures. In this regard, the lifetime of RF/analog circuits, which is defined as the point where at least one specification fails, is not just determined by aging at the device level, but also by the slack in the specifications, process variations, and the stress conditions on the devices. In this dissertation, firstly, a methodology for analyzing the performance degradation of RF circuits caused …

Contributors
Chang, Doo Hwang, Ozev, Sule, Bakkaloglu, Bertan, et al.
Created Date
2017

Complex electronic systems include multiple power domains and drastically varying dynamic power consumption patterns, requiring the use of multiple power conversion and regulation units. High frequency switching converters have been gaining prominence in the DC-DC converter market due to smaller solution size (higher power density) and higher efficiency. As the filter components become smaller in value and size, they are unfortunately also subject to higher process variations and worse degradation profiles jeopardizing stable operation of the power supply. This dissertation presents techniques to track changes in the dynamic loop characteristics of the DC-DC converters without disturbing the normal mode of …

Contributors
Beohar, Navankur, Bakkaloglu, Bertan, Ozev, Sule, et al.
Created Date
2017

Testing and calibration constitute a significant part of the overall manufacturing cost of microelectromechanical system (MEMS) devices. Developing a low-cost testing and calibration scheme applicable at the user side that ensures the continuous reliability and accuracy is a crucial need. The main purpose of testing is to eliminate defective devices and to verify the qualifications of a product is met. The calibration process for capacitive MEMS devices, for the most part, entails the determination of the mechanical sensitivity. In this work, a physical-stimulus-free built-in-self-test (BIST) integrated circuit (IC) design characterizing the sensitivity of capacitive MEMS accelerometers is presented. The BIST …

Contributors
Ozel, Muhlis Kenan, Bakkaloglu, Bertan, Ozev, Sule, et al.
Created Date
2017

Accessibility to the internal nodes of an analog/mixed-signal circuit while testing is extremely difficult. Furthermore, with technology scaling, the effect of process variations becomes more pronounced which in turn effects the test time, test cost, and die yield. As devices become more unreliable, the probability of failure of a die increases, yield decreases affecting the quality of test and cost.Therefore, test time minimization and test cost reduction are important. Moreover, process variations can affect the performance of analog/mixed circuits. Therefore, the performance of a System On-Chip(SoC) which tends to integrate multiple band gap reference circuits (BGRs) is effected due to …

Contributors
Ravouri, Yestina, Ozev, Sule, Ogras, Umit, et al.
Created Date
2017

With the natural resources of earth depleting very fast, the natural resources of other celestial bodies are considered a potential replacement. Thus, there has been rise of space missions constantly and with it the need of more sophisticated spectrometer devices has increased. The most important requirement in such an application is low area and power consumption. To save area, some scintillators have been developed that can resolve both neutrons and gamma events rather than traditional scintillators which can do only one of these and thus, the spacecraft needs two such devices. But with this development, the requirements out of the …

Contributors
Gupta, Kush, Barnaby, Hugh, Hardgrove, Craig, et al.
Created Date
2017

Rail clamp circuits are widely used for electrostatic discharge (ESD) protection in semiconductor products today. A step-by-step design procedure for the traditional RC and single-inverter-based rail clamp circuit and the design, simulation, implementation, and operation of two novel rail clamp circuits are described for use in the ESD protection of complementary metal-oxide-semiconductor (CMOS) circuits. The step-by-step design procedure for the traditional circuit is technology-node independent, can be fully automated, and aims to achieve a minimal area design that meets specified leakage and ESD specifications under all valid process, voltage, and temperature (PVT) conditions. The first novel rail clamp circuit presented …

Contributors
Venkatasubramanian, Ramachandran, Ozev, Sule, Bakkaloglu, Bertan, et al.
Created Date
2016

Internet of Things (IoT) has become a popular topic in industry over the recent years, which describes an ecosystem of internet-connected devices or things that enrich the everyday life by improving our productivity and efficiency. The primary components of the IoT ecosystem are hardware, software and services. While the software and services of IoT system focus on data collection and processing to make decisions, the underlying hardware is responsible for sensing the information, preprocess and transmit it to the servers. Since the IoT ecosystem is still in infancy, there is a great need for rapid prototyping platforms that would help …

Contributors
Suda, Naveen, Cao, Yu, Bakkaloglu, Bertan, et al.
Created Date
2016

Due to high level of integration in RF System on Chip (SOC), the test access points are limited to the baseband and RF inputs/outputs of the system. This limited access poses a big challenge particularly for advanced RF architectures where calibration of internal parameters is necessary and ensure proper operation. Therefore low-overhead built-in Self-Test (BIST) solution for advanced RF transceiver is proposed. In this dissertation. Firstly, comprehensive BIST solution for RF polar transceivers using on-chip resources is presented. In the receiver, phase and gain mismatches degrade sensitivity and error vector magnitude (EVM). In the transmitter, delay skew between the envelope …

Contributors
Jeong, Jae Woong, Ozev, Sule, Kitchen, Jennifer, et al.
Created Date
2015

ABSTRACT Designers creating the next generation remote sensing enabled smart devices need to overcome the challenges of prevailing ventures including time to market and expense. To reduce the time and effort involved in initial prototyping, a good reference design is often desired and warranted. This paper provides the necessary reference materials for Designers to implement a wireless solution efficiently and effectively. This document is intended for users with limited Bluetooth technology experience. Many sensing-enabled devices require a ‘hard-wire’ or cable link to a host monitoring system. This can limit the potential for product advancements by anchoring the system to a …

Contributors
Hughes, Clinton Francis, Blain Christen, Jennifer, Ozev, Sule, et al.
Created Date
2015

RF transmitter manufacturers go to great extremes and expense to ensure that their product meets the RF output power requirements for which they are designed. Therefore, there is an urgent need for in-field monitoring of output power and gain to bring down the costs of RF transceiver testing and ensure product reliability. Built-in self-test (BIST) techniques can perform such monitoring without the requirement for expensive RF test equipment. In most BIST techniques, on-chip resources, such as peak detectors, power detectors, or envelope detectors are used along with frequency down conversion to analyze the output of the design under test (DUT). …

Contributors
Gangula, Sudheer Kumar Reddy, Kitchen, Jennifer, Ozev, Sule, et al.
Created Date
2015

Modern Complex electronic system include multiple power domains and drastically varying power consumption patterns, requiring the use of multiple power conversion and regulation units. High frequency switching converters have been gaining prominence in the DC-DC converter market due to their high efficiency. Unfortunately, they are all subject to higher process variations jeopardizing stable operation of the power supply. This research mainly focus on the technique to track changes in the dynamic loop characteristics of the DC-DC converters without disturbing the normal mode of operation using a white noise based excitation and correlation. White noise excitation is generated via pseudo random …

Contributors
Bakliwal, Priyanka, Ozev, Sule, Bakkaloglu, Bertan, et al.
Created Date
2015

High speed current-steering DACs with high linearity are needed in today's applications such as wired and wireless communications, instrumentation, radar, and other direct digital synthesis (DDS) applications. However, a trade-off exists between the speed and resolution of Nyquist rate current-steering DACs. As the resolution increases, more transistor area is required to meet matching requirements for optimal linearity and thus, the overall speed of the DAC is limited. In this thesis work, a 12-bit current-steering DAC was designed with current sources scaled below the required matching size to decrease the area and increase the overall speed of the DAC. By scaling …

Contributors
Jankunas, Benjamin, Bakkaloglu, Bertan, Kitchen, Jennifer, et al.
Created Date
2014

Mobile platforms are becoming highly heterogeneous by combining a powerful multiprocessor system-on-chip (MpSoC) with numerous resources including display, memory, power management IC (PMIC), battery and wireless modems into a compact package. Furthermore, the MpSoC itself is a heterogeneous resource that integrates many processing elements such as CPU cores, GPU, video, image, and audio processors. As a result, optimization approaches targeting mobile computing needs to consider the platform at various levels of granularity. Platform energy consumption and responsiveness are two major considerations for mobile systems since they determine the battery life and user satisfaction, respectively. In this work, the models for …

Contributors
Gupta, Ujjwal, Ogras, Umit Y., Ozev, Sule, et al.
Created Date
2014

The research objective is fully differential op-amp with common mode feedback, which are applied in filter, band gap, Analog Digital Converter (ADC) and so on as a fundamental component in analog circuit. Having modeled various defect and analyzed corresponding probability, defect library could be built after reduced defect simulation.Based on the resolution of microscope scan tool, all these defects are categorized into four groups of defects by both function and location, bias circuit defect, first stage amplifier defect, output stage defect and common mode feedback defect, separately. Each fault result is attributed to one of these four region defects.Therefore, analog …

Contributors
Lu, Zhijian, Ozev, Sule, Kiaei, Sayfe, et al.
Created Date
2014

The applications which use MEMS accelerometer have been on rise and many new fields which are using the MEMS devices have been on rise. The industry is trying to reduce the cost of production of these MEMS devices. These devices are manufactured using micromachining and the interface circuitry is manufactured using CMOS and the final product is integrated on to a single chip. Amount spent on testing of the MEMS devices make up a considerable share of the total final cost of the device. In order to save the cost and time spent on testing, researchers have been trying to …

Contributors
Jangala Naga, Naveen Sai, Ozev, Sule, Bakkaloglu, Bertan, et al.
Created Date
2014